当前位置: 首页 > news >正文

机器学习——有监督学习和无监督学习

有监督学习

简单来说,就是人教会计算机学会做一件事。

给算法一个数据集,其中数据集中包含了正确答案,根据这个数据集,可以对额外的数据希望得到一个正确判断(详见下面的例子)

回归问题

例如现在有一个房价数据集,记录了不同面积的房子的实际卖价, 现在用图表表示数据集,横轴表示房子面积,纵轴表示房子的卖价, 图画出来后,可以用一个直线或者曲线去拟合(至于选择直线还是曲线,要看具体的衡量标准),然后现在有一个需求,就是我有一个x平方的房子,想要知道这个房子的卖价, 此时就可以通过在横轴的x位置,找到直线或曲线上对应的纵轴的值y,就可以得到预估卖价。

这个房价问题是个回归问题,回归问题是指:我们想要预测连续的数据输出,即预测的结果是一个连续值,如这里房子卖出的价格就是一个连续值,还有一种类型是分类问题(详见下面),以二分类问题为例,对于某一个样本,它的结果只有两种可能:对或错, 而我们预测某个数据的结果,要么是对要么是错,也就是说结果是离散的 那么对比之下,我们预测某个面积的房子的卖价,卖价可能是一个范围里的任何数字,也就是连续的, 所以回归问题就是某个数据的结果是连续的,不是像分类问题的结果是离散的。

分类问题

例如现在有一组数据集,是不同的肿瘤大小对应它是否是恶性肿瘤(结果只有两种:是或否),现在需要预测肿瘤大小为x的肿瘤,是否是恶性肿瘤,预测的结果为y(是或否),这就是个二分类问题,即答案只有两种。除此之外,还有多分类问题,也就是答案不止两种(但也是有限种类)。

在判断肿瘤是否是恶性的这个问题上,我们判断的标准只有肿瘤大小这一个特征/属性, 而实际中,可能会根据多个特征/属性进行综合判断进而得到结果,上面的房价问题也是如此,我们只根据房屋面积这一个特征进行估价,而实际上肯定还会结合地段、交通等多个特征进行判断。如下面的数据集是根据肿瘤大小和患者年龄两个特征来判断肿瘤的性质。

无监督学习

简单来说,就是让计算机在不用人教的情况下自己学会做一件事

在上述的监督学习中,房价问题中的数据集的每个样本都清楚的知道了它的卖价,在肿瘤问题中的数据集中,每个样本也都被表明为是恶性还是良性。由此可见,在有监督学习中,对于数据集的每个样本,我们都清楚的告知了的正确答案(如肿瘤是恶性还是良性)。

而在无监督学习中,我们给算法一个数据集,不告诉算法这个数据集的每个数据点代表什么,要求算法找出数据的类型结构。

例如,给定一组不同的个体,对于每个个体,检测他们是否拥有某个特定的基因,具体做法就是,运行一个聚类算法,根据个体所拥有的基因把不同的个体归为不同类型的人,这就是无监督学习。因为在给定这些个体时,即给定数据集时,没有事先告知每个个体的类型,只是告诉算法,这里有一堆数据。我不知道这些数据是什么,不知道每个数据的类型,甚至不知道总共有哪些类型,你能自动找出这些数据的结构吗?虽然我事先不知道有哪些类型,但你能按得到的类型把这些个体进行分类吗?因为我们没有把数据集中的正确答案(即每个个体属于什么类型的人)告诉算法,所以这就是无监督学习。

聚类算法

聚类算法是无监督学习算法中的一种,对于给定的数据集,无监督学习算法可能判定数据集包含两个不同的簇,然后把这些数据分为两个不同的簇,这就是聚类算法。

聚类算法的应用举例

  • 市场细分。根据客户信息将客户分为不同的市场群体,进而进行精准销售。我们只拥有全部客户的信息,但是并不知道有哪些市场细分,也不知道某个客户属于哪种市场细分,所以让算法自己从数据中去发现这些
  • 社交网络的分析。可以得知和你联系最频繁的人,判断哪些人可能相互认知等。
  • 新闻分类。将几万条甚至更多的新闻组成不同的新闻专题

相关文章:

机器学习——有监督学习和无监督学习

有监督学习 简单来说,就是人教会计算机学会做一件事。 给算法一个数据集,其中数据集中包含了正确答案,根据这个数据集,可以对额外的数据希望得到一个正确判断(详见下面的例子) 回归问题 例如现在有一个…...

MySQL单主模式部署组复制集群

前言 本篇文章介绍MySQL8.0.27版本的组复制详细搭建过程,教你如何快速搭建一个三节点的单主模式组复制集群。 实际上,MySQL组复制是MySQL的一个插件 group_replication.so,组中的每个成员都需要配置并安装该插件,配置和安装过程…...

【大厂AI课学习笔记】【1.5 AI技术领域】(10)对话系统

对话系统,Dialogue System,也称为会话代理。是一种模拟人类与人交谈的计算机系统,旨在可以与人类形成连贯通顺的对话,通信方式主要有语音/文本/图片,当然也可以手势/触觉等其他方式 一般我们将对话系统,分…...

【ARM 嵌入式 编译系列 2.7 -- GCC 编译优化参数详细介绍】

请阅读【嵌入式开发学习必备专栏 】 文章目录 GCC 编译优化概述常用优化等级-O1 打开的优化选项-O2 打开的优化选项-O3 打开的优化选项-Os 打开的优化选项优化技术使用优化选项的注意事项GCC 编译优化概述 GCC(GNU Compiler Collection)包含了用于C、C++、Objective-C、Fort…...

《剑指 Offer》专项突破版 - 面试题 38、39 和 40 : 通过三道面试题详解单调栈(C++ 实现)

目录 面试题 38 : 每日温度 面试题 39 : 直方图最大矩形面积 方法一、暴力求解 方法二、递归求解 方法三、单调栈法 面试题 40 : 矩阵中的最大矩形 面试题 38 : 每日温度 题目: 输入一个数组,它的每个数字是某天的温度。请计算每天需要等几天才会…...

动态规划C语言

#include <stdio.h> #include <stdlib.h> //0-1背包问题是一种经典的组合优化问题&#xff0c; //问题描述为&#xff1a;有一个给定容量的背包和一组具有不同价值和重量的物品&#xff0c;如何选择物品放入背包中&#xff0c;以使得背包中物品的总价值最大化&…...

基于微信小程序的校园二手交易平台

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

K8S系列文章之 [使用 Alpine 搭建 k3s]

官方文档&#xff1a;K3s - 轻量级 Kubernetes | K3s 官方描述&#xff0c;可运行在 systemd 或者 openrc 环境上&#xff0c;那就往精简方向走&#xff0c;使用 alpine 做系统。与 RHEL、Debian 的区别&#xff0c;主要在防火墙侧&#xff1b;其他基础配置需求类似&#xff0…...

计算机视觉 | OpenCV 实现手势虚拟控制亮度和音量

Hi&#xff0c;大家好&#xff0c;我是半亩花海。在当今科技飞速发展的时代&#xff0c;我们身边充斥着各种智能设备&#xff0c;然而&#xff0c;如何更便捷地与这些设备进行交互却是一个不断被探索的课题。本文将主要介绍一个基于 OpenCV 的手势识别项目&#xff0c;通过手势…...

python28-Python的运算符之三目运算符

Python可通过if语句来实现三目运算符的功能&#xff0c;因此可以近似地把这种if语句当成三目运算符。作为三目运算符的f语句的语法格式如下 True_statements if expression else False_statements 三目运算符的规则是:先对逻辑表达式expression求值&#xff0c;如果逻辑表达式…...

高德 API 10009

问题 笔者使用高德地图所提供的API接口&#xff0c;访问接口报错 {"info":"USERKEY_PLAT_NOMATCH","infocode":"10009","status":"0","sec_code_debug":"d41d8cd98f00b204e9800998ecf8427e"…...

Go 语言中如何大小端字节序?int 转 byte 是如何进行的?

嗨&#xff0c;大家好&#xff01;我是波罗学。 本文是系列文章 Go 技巧第十五篇&#xff0c;系列文章查看&#xff1a;Go 语言技巧。 我们先看这样一个问题&#xff1a;“Go 语言中&#xff0c;将 byte 转换为 int 时是否涉及字节序&#xff08;endianness&#xff09;&#x…...

论文阅读——MP-Former

MP-Former: Mask-Piloted Transformer for Image Segmentation https://arxiv.org/abs/2303.07336 mask2former问题是&#xff1a;相邻层得到的掩码不连续&#xff0c;差别很大 denoising training非常有效地稳定训练时期之间的二分匹配。去噪训练的关键思想是将带噪声的GT坐标…...

JPEG图像的压缩标准(1)

分3个博客详细介绍JPEG图像的压缩标准&#xff0c;包含压缩和解压缩流程&#xff0c;熵编码过程和文件存储格式。 一、JPEG压缩标准概述 JPEG压缩标准由国际标准化组织 (International Organization for Standardization, ISO) 制订&#xff0c;用于静态图像压缩。JPEG标准包…...

数解 transformer 之 self attention transformer 公式整理

句子长度为n&#xff1b;比如2048&#xff0c;或1024&#xff0c;即&#xff0c;一句话最多可以是1024个单词。 1, 位置编码 可知&#xff0c;E是由n个列向量组成的矩阵&#xff0c;每个列向量表示该列号的位置编码向量。 2, 输入向量 加入本句话第一个单词的词嵌入向量是, 第…...

ubuntu22.04@laptop OpenCV Get Started

ubuntu22.04laptop OpenCV Get Started 1. 源由2. 步骤3. 预期&展望4. 参考资料 1. 源由 OpenCV在学校的时候接触过&#xff0c;不过当时专注在物理、研究方面&#xff0c;没有好好的学习下。 这次借后续视频分析刚性需求&#xff0c;对OpenCV做个入门的学习和研读&#…...

【Java】苍穹外卖 Day01

苍穹外卖-day01 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示&#xff1a; 管理端-外卖商家使用用户端-点餐用户使用当我们完成该项目的学习&#xff0c;可以培养以下能力&#xff1a; 1. 软件开发整体介绍 作为一名软件开…...

Ivanti Pulse Connect Secure VPN SSRF(CVE-2023-46805)漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…...

GPT-4:比ChatGPT3.5好得多,但它有多好你知道么?

GPT-4简介 GPT-4是一款由OpenAI开发的人工智能语言模型&#xff0c;它是ChatGPT3.5的升级版。GPT-4拥有更强大的学习能力、更高的生成质量和更广泛的知识覆盖范围&#xff0c;被誉为人工智能技术的重要突破。 GPT-4与ChatGPT3.5的对比 1. 学习能力 GPT-4采用了更多的神经网…...

测试:JMeter如何获取非json格式的响应参数

JMeter如何获取非json格式的响应参数 在 JMeter 中获取非 JSON 格式的响应参数通常涉及使用后置处理器来提取这些参数。以下是一些常见的方法来获取不同类型的响应数据&#xff1a; 正则表达式提取器&#xff1a; 适用于提取文本、HTML、XML 等格式中的特定文本。使用正则表达…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...