当前位置: 首页 > news >正文

Flink 动态表 (Dynamic Table) 解读

《大数据平台架构与原型实现:数据中台建设实战》博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维码进入京东手机购书页面。

题记

根据过去在流上维持状态的编程经验,我们可以深刻地体会到:Dynamic Table 的本质其实是基于 changelog 数据流维持的一个流上的状态(Streaming State)!

动态表是 Flink 能以 SQL 驱动和操纵流式处理的基础,也是 Flink 实现 ”批流一体“ 的一项内在的技术支撑。简单地说,它的思想就是:将一个”流“抽象成一张”无界”的数据表,这样就可以在上面施加 SQL 操作了。静态的关系表和数据流有可以类比的地方,这是能将两者映射在一起的理论基础,同时,它们之间也有难以弥合的差异,所以在某些方面要进行限制或做出适当的妥协。文本将以 Flink 官方文档:动态表 (Dynamic Table) 为基底,给出一些批注式的解读。

对齐“概念”


首先,让我们来统一一些概念,对于一张动态表的查询可以有两个层面的解读,从上层应用的角度看:它就是一条 SQL,在查询一张表,只不过这张表是动态的,它的查询结果会一直在变(不同时间查,结果是不一样的),相应地,这条SQL其实是一直在跑的(不是反复查询,而是是一个持续运行 streaming job);从底层实现的角度看,这条 SQL 其实是被翻译成了一个Streaming 作业,从源端不停地读取 changelog 数据,然后在流上维持一个”状态“数据,状态数据就是 SQL 要表达的结果表。所以:

查询动态表就是生成一个连续查询(一个 Streaming Job),一个连续查询是不会终止的(流是不会自行终止的,动态表是“无界”的),结果会生成一个动态表 (Streaming 上的 ”状态“),查询会不断更新这张结果表(更新状态),实时地反映新流入的数据后对结果表的影响(同样的条件,不同时间查询,结果也可能不同,结果表里的数据可能一直在变)。

为了方便描述,我们可能会交替使用以下称谓或术语,它们指得都是同一件事情:

流式 SQL 查询 <=> 查询动态表 <=> 连续查询

”动态表“ 两例


Flink 官方文档给出的两个张”动态表“的图示还是非常形象的,也是后面解释关联问题的基础,所以,这里先列出来:

  • 第一个示例:

在这里插入图片描述

  • 第二个示例:

在这里插入图片描述

结果表的状态:更新中… 或 追加中…


既然连续查询是永不停止的,那么结果表自然也是一直在变化的,它要么是在持续“更新”记录中,要么是在持续 “追加”记录中,至于是更新还是追加,取决于中间的处理逻辑,也就是 SQL 本身。官方文档给出的两个示例恰好一个是更细,另一个是追加:

  • 第一个查询的结果表是需要”持续更新“的(有 UPSERT 操作),以 Mary 为例,她的 cnt 从 1 到 2 时就是一次更新
  • 第二个查询只附加到结果表,即结果表的 changelog 流只包含 INSERT 操作。

一个查询是产生一个只追加的表还是一个更新的表有一些含义:

  • 产生更新更改的查询通常必须维护更多的状态。
  • 将 append-only 的表转换为流与将已更新的表转换为流是不同的(参阅表到流的转换章节)。

查询限制


尽管动态表的概念在语义上能将SQL(二维关系模型)比较好地映射到流上,但还是会有一些“力所不能及”的地方,这主要体现在对查询的一些“限制”上。有两类典型的限制:

  • 维持了过多/过大的“状态”:这一点比较好理解,如果你的流式查询的结果表每一条都是一个”状态“,那流就需要一直维持这个状态,表的结果集绝大,维持的状态就越大/越大,直到程序因资源不足最后报错。此类案例就是:在第一个查询示例中,如果结果表中的每一条用户数据都是一个”状态“(可被 Upsert ),如果用户数量巨大,这个 SQL 就会报错,因为维持的 ”状态“ 负担太大;

    -- 若用户数量过多,则维持的状态就会过多过大,可能会消耗大量资源
    SELECT user, COUNT(url) FROM clicks GROUP BY user;
    
  • 更新的数据量过大:通俗一点说就是:更新牵涉的数量太大,这一点在基于静态表的批量查询中并不会体现出来,但基于动态表的流式 SQL 查询是”连续查询“,它会不停地查询,不停地更新结果表,此时,如果查询每次都要更新大量已输出的结果行,那么查询成本就会被叠加”放大“,变得非常高!此类案例就是官方文档给出的示例,每此有新记录产生,都要重新进行排名,更新所有已输出的行,对于不停刷新的动态表来说,这一操作成本太大。

    -- 每此有新记录产生,都要重新进行排名,更新所有已输出的行,对于不停刷新的动态表来说,这一操作成本太大
    SELECT user, RANK() OVER (ORDER BY lastAction)
    FROM (SELECT user, MAX(cTime) AS lastAction FROM clicks GROUP BY user
    );
    

相关文章:

Flink 动态表 (Dynamic Table) 解读

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…...

【原创 附源码】Flutter海外登录--Google登录最详细流程

最近接触了几个海外登录的平台&#xff0c;踩了很多坑&#xff0c;也总结了很多东西&#xff0c;决定记录下来给路过的兄弟坐个参考&#xff0c;也留着以后留着回顾。更新时间为2024年2月8日&#xff0c;后续集成方式可能会有变动&#xff0c;所以目前的集成流程仅供参考&#…...

第70讲axios后端请求工具类封装

axios工具类封装&#xff1a; // 引入axios import axios from axios;// 创建axios实例 const httpService axios.create({// url前缀-http:xxx.xxx// baseURL: process.env.BASE_API, // 需自定义baseURL:http://localhost:80/,// 请求超时时间timeout: 3000 // 需自定义 })…...

【数学建模】【2024年】【第40届】【MCM/ICM】【F题 减少非法野生动物贸易】【解题思路】

一、题目 &#xff08;一&#xff09; 赛题原文 2024 ICM Problem F: Reducing Illegal Wildlife Trade Illegal wildlife trade negatively impacts our environment and threatens global biodiversity. It is estimated to involve up to 26.5 billion US dollars per y…...

第3节、电机定速转动【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍用定时器定时的方式&#xff0c;精准控制脉冲时间&#xff0c;从而控制步进电机速度。 一、计算过程 电机每一步的角速度等于走这一步所花费的时间&#xff0c;走一步角度等于步距角&#xff…...

【51单片机】LCD1602(可视化液晶屏)调试工具的使用

前言 大家好吖&#xff0c;欢迎来到 YY 滴 单片机系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY…...

Netty应用(四) 之 Reactor模型 零拷贝

目录 6.Reactor模型 6.1 单线程Reactor 6.2 主从多线程Reactor (主--->Boss | 从--->Worker | 一主多从机制) 7.扩展与补充 8.Reactor模型的实现 8.1 多线程Reactor模型的实现&#xff08;一个Boss线程&#xff0c;一个Worker线程&#xff09; 8.2 多线程Reactor模…...

Huggingface上传模型

Huggingface上传自己的模型 参考 https://juejin.cn/post/7081452948550746148https://huggingface.co/blog/password-git-deprecationAdding your model to the Hugging Face Hub&#xff0c; huggingface.co/docs/hub/ad…Welcome&#xff0c;huggingface.co/welcome三句指…...

kyuubi 接入starrocks | doris

kyuubi 接入starrocks 一、环境 Hadoop集群 组件版本Hadoop3.1.1spark3.Xzookeeper3.XHive3.X kyuubi 版本 1.7.1 starrocks 2.X   已将kyuubi部署到yarn上&#xff0c;并且接入了spark3引擎&#xff0c;并通过Ambari进行kyuubi组件的管理&#xff0c;下面步骤为新增对sta…...

notepad++成功安装后默认显示英文怎么设置中文界面?

前几天使用电脑华为管家清理电脑后&#xff0c;发现一直使用的notepad软件变回了英文界面&#xff0c;跟刚成功安装的时候一样&#xff0c;那么应该怎么设置为中文界面呢&#xff1f;具体操作如下&#xff1a; 1、打开notepad软件&#xff0c;点击菜单栏“Settings – Prefere…...

HiveSQL——连续增长问题

注&#xff1a;参考文章&#xff1a; SQL连续增长问题--HQL面试题35_sql判断一个列是否连续增长-CSDN博客文章浏览阅读2.6k次&#xff0c;点赞6次&#xff0c;收藏30次。目录0 需求分析1 数据准备3 小结0 需求分析假设我们有一张订单表shop_order shop_id,order_id,order_time…...

使用cocos2d-console初始化一个项目

先下载好cocos2d-x的源码包 地址 https://www.cocos.com/cocos2dx-download 这里使用的版本是 自己的电脑要先装好python27 用python安装cocos2d-console 看到项目中有个setup.py的一个文件 python setup.py 用上面的命令执行一下。 如果执行正常的话回出现上面的图 然后…...

VitePress-13- 配置-title的作用详解

作用描述 1、title 是当前站点的标题&#xff1b;2、默认值是 &#xff1a;VitePress&#xff1b;3、当使用默认主题时&#xff0c;会直接展示在 页面的【导航条】中&#xff1b;4、一个特殊的作用 &#xff1a; 会作为单个页面的默认标题后缀&#xff01;除非又指定了【title…...

Rust-AI todo list 开发体验

之前用AI协助开发了一个Vue模块&#xff0c;感觉意犹未尽&#xff0c;所以决定再让AI 来协助我做一个todo list。 todo list对我来说真是一个刚需&#xff0c;从我决定做一件事情&#xff0c;到这件事情做完&#xff0c;我的todo list不但不会减少&#xff0c;反而会增加。 回…...

2024-02-07(Sqoop,Flume)

1.Sqoop的增量导入 实际工作中&#xff0c;数据的导入很多时候只需要导入增量的数据&#xff0c;并不需要将表中的数据每次都全部导入到hive或者hdfs中&#xff0c;因为这样会造成数据重复问题。 增量导入就是仅导入新添加到表中的行的技术。 sqoop支持两种模式的增量导入&a…...

LDAR管理系统解决方案

1、密封点数量不准确 工业企业LDAR项目多委托第三方进行检测&#xff0c;由于前几年由于检测费较高&#xff0c;为减少开支&#xff0c;很多企业只安排检测公司检测了部分密封点&#xff0c;造成密封点遗漏。也有少数企业为了从中谋私利&#xff0c;虚增密封点。 2、密封点台账…...

[vscode]ssh报错: Resolver error: Error: XHR failedscode错误

场景问题&#xff1a;通过vscode ssh连接远程服务器失败&#xff0c;报错&#xff1a;Resolver error: Error: XHR failedscode&#xff1a; 问题原因&#xff1a;~/.vscode-server/bin/一串数字下的vscode-server-linux-x64.tar.gz由于某种原因无法正常下载 解决方式&#x…...

【Maven】依赖、构建管理 继承与聚合 快速学习(3.6.3 )

文章目录 Maven是什么&#xff1f;一、Maven安装和配置本地配置文件设置idea配置本地maven 二、基于IDEA的Maven工程创建2.1 Maven工程GAVP属性2.2 Idea构建Maven JavaEE工程 三、Maven工程项目结构说明四、Maven核心功能依赖和构建管理4.1 依赖管理和配置4.2 依赖传递和冲突4.…...

Flume安装部署

安装部署 安装包连接&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1m0d5O3Q2eH14BpWsGGfbLw?pwd6666 &#xff08;1&#xff09;将apache-flume-1.10.1-bin.tar.gz上传到linux的/opt/software目录下 &#xff08;2&#xff09;解压apache-flume-1.10.1-bin.tar.gz…...

点云从入门到精通技术详解100篇-非结构化道路下无人平台路径规划与运动控制

目录 前言 路径规划方法研究现状 传统规划算法 智能规划算法 规划方法比较...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...