当前位置: 首页 > news >正文

使用Python进行数据的描述性分析,用少量的描述性指标来概括大量的原始数据

在进行数据分析时,当研究者得到的数据量很小时,可以通过直接观察原始数据来获得所有的信息。但是,当得到的数据量很大时,就必须借助各种描述性指标来完成对数据的描述工作。用少量的描述性指标来概括大量的原始数据,对数据展开描述的统计分析方法被称为描述性统计分析。需要说明的是,基于描述性指标开展的描述性分析通常针对连续变量的数值型数据,通过计算平均值、标准差、最大值、最小值、四分位数等统计指标的方式来进行,分类变量数据不宜用描述性指标来进行描述性分析。

在Python环境中,描述性分析可通过pandas模块中的describe()函数来实现。默认情况下,describe()函数只为参与分析的数据集中的数值型变量列生成描述性统计结果(分类变量若已编码为数值型,则也可生成描述性统计结果),如果任何列中有缺失的数值,则pandas在计算描述性统计的时候会自动排除这些数值。

我们在Spyder代码编辑区内输入以下代码并运行:

运行结果如图所示。

数据集中共有529个样本(529 entries, 0 to 528)、5个变量(total 5 columns)。5个变量分别是公司名称、行业分类、省份、营业收入、净利润,这5个变量均包含529个非缺失值(529 non-null),其中公司名称、行业分类、省份的数据类型为字符串(object),营业收入、净利润的数据类型为浮点型(float64)。数据文件中共有3个字符串(object)变量、2个浮点型(float64)变量,数据内存为20.8KB。

针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)《Python数据科学应用从入门到精通》(张甜 杨维忠 著 2023年11月新书 清华大学出版社)。这两本书的特色是在数据分析、机器学习各种算法的介绍方面通俗易懂,较少涉及数学推导,对数学基础要求相对不高,在python代码方面讲的很细致,看了以后根据自身需要选取算法、优化代码、科学调参。都有配套免费提供的源代码、数据文件和视频讲解,也有PPT、思维导图、习题等。

为什么说这两本书值得?首先说《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社),内容非常详实,包含了Python和机器学习,相当于一次获得了两本书。在讲解各类机器学习算法时,逐一详解用到的各种Python代码,针对每行代码均有恰当注释(这一点基本上是大多数书目做不到的)。

《Python数据科学应用从入门到精通》一书,旨在教会读者实现全流程的数据分析,并且相对《Python机器学习原理与算法实现》一书增加了很多概念性、科普性的内容,进一步降低了学习难度。国务院发展研究中心创新发展研究部第二研究室主任杨超 ,山东大学经济学院金融系党支部书记、副主任、副教授、硕士生导师张博,山东管理学院信息工程学院院长 袁锋 教授、硕士生导师,山东大学经济学院刘一鸣副研究员、硕士生导师,得厚投资合伙人张伟民等一众大牛联袂推荐。书中全是干活,买这一本书相当于一下子得到了5本书(Python基础、数据清洗、特征工程、数据可视化、数据挖掘与建模),而且入门超级简单,不需要编程基础,也不需要过多数学推导,非常适用于零基础学生。全书内容共分13章。其中第1章为数据科学应用概述,第2章讲解Python的入门基础知识,第3章讲解数据清洗。第4~6章介绍特征工程,包括特征选择、特征处理、特征提取。第7章介绍数据可视化。第8~13章介绍6种数据挖掘与建模方法,分别为线性回归、Logistic回归、决策树、随机森林、神经网络、RFM分析。从数据科学应用和Python的入门,再到数据清洗与特征工程,最终完成数据挖掘与建模或数据可视化,从而可以为读者提供“从拿到数据开始,一直到构建形成最终模型或可视化报告成果”的一站式、全流程指导。

两本书随书赠送的学习资料也很多,包括全部的源代码、PPT、思维导图,还有10小时以上的讲解视频,每一章后面还有练习题及参考答案,还有学习群,相对于只看网络上的视频,一方面更加系统、高效,另一方面照着书一步步操作学起来也事半功倍。全网热销中,当当、京东等平台搜索“Python机器学习 杨维忠”“Python数据科学 杨维忠”即可。

《Python机器学习原理与算法实现》(杨维忠、张甜著,2023年2月,清华大学出版社),适用于学习Python/机器学习

《Python数据科学应用从入门到精通》(张甜 杨维忠 著 2023年11月新书 清华大学出版社)适用于学习数据分析、数据科学、数据可视化等。

创作不易,恳请多多点赞,感谢您的支持!也期待大家多多关注我,让我共同学习数据分析知识。

相关文章:

使用Python进行数据的描述性分析,用少量的描述性指标来概括大量的原始数据

在进行数据分析时,当研究者得到的数据量很小时,可以通过直接观察原始数据来获得所有的信息。但是,当得到的数据量很大时,就必须借助各种描述性指标来完成对数据的描述工作。用少量的描述性指标来概括大量的原始数据,对…...

【JS逆向三】逆向某某网站的sign参数,并模拟生成仅供学习

逆向日期:2024.02.06 使用工具:Node.js 类型:webpack 文章全程已做去敏处理!!! 【需要做的可联系我】 可使用AES进行解密处理(直接解密即可):AES加解密工具 1、打开某某…...

移动光猫gs3101超级密码及改桥接模式教程

文章目录 超级管理员账号改桥接模式路由器连接光猫,PPPOE拨号即可!附录:如果需要改桥接的话不知道拨号密码咋办打开光猫Telnet功能Telnet 登录 参考文章 移动光猫吉比特GS3101超级账号获取更改桥接 移动光猫gs3101超级密码及改桥接模式教程 …...

leetcode 153

153 寻找旋转排序数组中的最小值 这道题,如果我们熟悉数组 api,可以直接用 Arrays.sort()秒杀,这个方法使用了双轴快速排序算法。 解法1如下: class Solution {public int findMin(int[] nums) {Arrays.sort(nums);return nums…...

【MySQL】数据库的基础——数据库的介绍、MySQL的介绍和架构、SQL分类、MySQL的基本使用、MySQL的存储引擎

文章目录 MySQL1. 数据库的介绍1.2 主流数据库 2. MySQL的介绍2.1 MySQL架构2.2 SQL分类2.3 MySQL的基本使用2.4 MySQL存储引擎 MySQL 1. 数据库的介绍 数据库(Database,简称DB)是按照数据结构来组织、存储和管理数据的仓库。它是长期存储在计…...

后端的技术设计文档

一、 背景 1.简介 2.业务规划(非必需) 3.工作项拆解 拆解成多个工作项,每个工作项,需要多少人力。 4.资源评估(非必需) 有没有新的服务 二、架构设计 1.架构图(非必需,新服务比较需要) 2.技术选型 SpringCloud、Redis、Mysql、Myba…...

Windows10安装PCL1.14.0及点云配准

一、下载visual studio2022 下载网址:Visual Studio: 面向软件开发人员和 Teams 的 IDE 和代码编辑器 (microsoft.com) 安装的时候选择"使用C的桌面开发“,同时可以修改文件路径,可以放在D盘。修改文件路径的时候,共享组件、…...

C语言第二十二弹---指针(六)

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】 指针 1. 回调函数是什么? 2、qsort使用举例 2.1、使用qsort函数排序整型数据 2.2 使用qsort排序结构体数据 3、qsort函数的模拟实现 总结 1. 回…...

Qt Windows和Android使用MuPDF预览PDF文件

文章目录 1. Windows MuPDF编译2. Android MuPDF编译3. 引用 MuPDF 库4. 解析本地PDF文件 1. Windows MuPDF编译 使用如下命令将MuPDF的源码克隆到本地 git clone --recursive git://git.ghostscript.com/mupdf.git直接用VS,打开 mupdf/platform/win32/mupdf.sln …...

MongoDB聚合:$replaceWith

r e p l a c e W i t h ‘ 可以将输入文档替换为指定的文档。该操作可以替换输入文档的所有字段,包括 ‘ i d ‘ 字段。使用 ‘ replaceWith可以将输入文档替换为指定的文档。该操作可以替换输入文档的所有字段,包括_id字段。使用 replaceWith‘可以将输…...

Vue 进阶系列丨实现简易VueRouter

‍‍Vue 进阶系列教程将在本号持续发布,一起查漏补缺学个痛快!若您有遇到其它相关问题,非常欢迎在评论中留言讨论,达到帮助更多人的目的。若感本文对您有所帮助请点个赞吧! 2013年7月28日,尤雨溪第一次在 G…...

unity editor 编辑器 GUID localID LocalFileId 查找问题

//传入对象实例化ID 可以获取到 guid localid guid预设的ID localid 预设内的ID //这个方法有个问题如果在预设编辑器状态下 可能出现查不到 guid localid 原因可能 传入对象是是编辑状态下instanceid 并不是保存状态下的 UnityEditor.AssetDatabase.TryGetGUIDAndLocalF…...

【Mybatis】从0学习Mybatis(2)

前言 本篇文章是从0学习Mybatis的第一篇文章,由于篇幅太长CSDN会限流,因此我打算分开两期来写,这是第二期!第一期在这儿:【Mybatis】从0学习Mybatis(1)-CSDN博客 1.什么是ResultMap结果映射&am…...

ChatGPT高效提问—prompt常见用法(续篇九)

ChatGPT高效提问—prompt常见用法(续篇九) ​ 如何准确地向大型语言模型提出问题,使其更好地理解我们的意图,从而得到期望的答案呢?编写有效的prompt的技巧,精心设计的prompt,获得期望的的答案。 1.1 增加条件 ​ 在各种prompt技巧中,增加条件是最常用的。在prompt中…...

echarts的title标题属性

echarts的title标题属性 title 标题组件,包含主标题和副标题。 位于 option对象第一层. title.text 设置主标题内容title.subtext 设置副标题内容 在 ECharts 2.x 中单个 ECharts 实例最多只能拥有一个标题组件。但是在 ECharts 3 中可以存在任意多个标题组件&am…...

【HTML+CSS】使用CSS中的Position与z-index轻松实现一个简单的自定义标题栏效果

🚀 个人主页 极客小俊 ✍🏻 作者简介:web开发者、设计师、技术分享博主 🐋 希望大家多多支持一下, 我们一起学习和进步!😄 🏅 如果文章对你有帮助的话,欢迎评论 💬点赞&a…...

从零开始:用 Rust 编写你的第一个 Web 服务

Rust 是一种现代、高性能的编程语言,近年来在 Web 开发领域也有了一席之地。本文将介绍如何使用 Rust 编写一个简单的 Web 程序,从搭建开发环境到创建第一个 Web 页面。 1. 开发环境搭建 首先,确保你已经安装了 Rust 工具链。你可以通过在终…...

机器学习复习(8)——逻辑回归

目录 逻辑函数(Logistic Function) 逻辑回归模型的假设函数 从逻辑回归模型转换到最大似然函数过程 最大似然函数方法 梯度下降 逻辑函数(Logistic Function) 首先,逻辑函数,也称为Sigmoid函数&#…...

深入解析MySQL 8:事务数据字典的变革

随着数据库技术的不断发展和完善,元数据的管理成为了一个日益重要的议题。在MySQL 8中,一项引人注目的新特性是引入了事务数据字典(Transaction Data Dictionary,简称TDD),它改变了元数据的管理方式&#x…...

jquery写表格,通过后端传值,并合并单元格

<!DOCTYPE html> <html> <head><title>Table Using jQuery</title><style>#tableWrapper {width: 100%;height: 200px; /* 设置表格容器的高度 */overflow: auto; /* 添加滚动条 */margin-top: -10px; /* 负的外边距值&#xff0c;根据实际…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...