当前位置: 首页 > news >正文

机器学习复习(8)——逻辑回归

目录

逻辑函数(Logistic Function)

逻辑回归模型的假设函数

从逻辑回归模型转换到最大似然函数过程

最大似然函数方法

梯度下降


逻辑函数(Logistic Function)

首先,逻辑函数,也称为Sigmoid函数,是一个常见的S形函数。其数学表达式为:

g(z)=\frac1{1+e^{-z}}

这个函数的特点是,其输出值总是在0和1之间。这个性质使得Sigmoid函数非常适合用来进行二分类,在机器学习中,它可以将任意实数映射到(0, 1)区间,用来表示某个事件发生的概率。例如,在逻辑回归模型中,我们可以用它来预测一个实例属于某个类别的概率。

def sigmoid(z):return 1 / (1 + np.exp(-z))

可视化:

nums = np.arange(-10, 10, step=1)fig, ax = plt.subplots(figsize=(12,8))
ax.plot(nums, sigmoid(nums), 'r')
plt.show()

逻辑回归模型的假设函数

逻辑回归模型的假设函数将输入特征X和参数θ的线性组合通过逻辑函数转换为一个概率值,其公式为:

h_\theta(x)=\frac1{1+e^{-\theta^TX}}

这里,θ^T X是参数θ和输入特征X的点积,它将多个输入特征线性组合成一个实数值,然后通过逻辑函数映射到(0, 1)区间。这个映射的结果可以被解释为在给定输入特征X的条件下,预测结果为正类的概率。

逻辑回归模型通过优化参数θ来最大化观测数据的似然函数,从而找到最佳的决策边界,以区分不同的类别。在实际应用中,逻辑回归是一个非常强大且广泛使用的分类算法,特别是在二分类问题中。 

从逻辑回归模型转换到最大似然函数过程

逻辑回归模型的假设函数定义为:

h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}}

为了找到最佳的参数θ,我们使用最大似然估计。对于二分类问题,给定的数据集D=\{(x^{(i)},y^{(i)})\}_{i=1}^{m},其中y^{(i)}\in\{0,1\},,我们可以写出似然函数:

L(\theta)=P(y|X;\theta)=\prod_{i=1}^m(h_\theta(x^{(i)}))^{y^{(i)}}(1-h_\theta(x^{(i)}))^{1-y^{(i)}}

这个似然函数表示了,在给定参数θ和输入X的条件下,观察到当前数据集y的概率。最大化这个似然函数等价于最大化观测数据在当前模型参数下出现的概率。

为了便于计算,通常对似然函数取对数,得到对数似然函数:

\log L(\theta)=\sum_{i=1}^m[y^{(i)}\log h_\theta(x^{(i)})+(1-y^{(i)})\log(1-h_\theta(x^{(i)}))]

 最大化对数似然函数相对简单,因为对数函数是单调的,且对数似然函数是关于θ的凸函数,容易通过梯度下降等优化算法找到全局最优解。

在机器学习中,我们通常通过最小化损失函数(而不是最大化似然函数)来训练模型。因此,我们将最大化对数似然问题转化为最小化损失函数问题。损失函数是对数似然函数的负值,平均化到每个样本上,即:

这就是逻辑回归中使用的损失函数,也称为对数损失或交叉熵损失。通过最小化这个损失函数,我们可以找到最佳的模型参数θ,使模型对训练数据的拟合程度最高,即最可能产生观测数据的参数。 

最大似然函数方法

由于乘除法不太好优化计算,通常通过对数的方法进行优化求解,损失函数如下:

\begin{aligned}J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log(h_{\theta}(x^{(i)}))+(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))]\end{aligned}

def cost(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)first = np.multiply(-y, np.log(sigmoid(X * theta.T)))second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))return np.sum(first - second) / (len(X))

梯度下降

实际上这里只计算量梯度,并没有下降

def gradient(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)parameters = int(theta.ravel().shape[1])grad = np.zeros(parameters)error = sigmoid(X * theta.T) - yfor i in range(parameters):term = np.multiply(error, X[:,i])grad[i] = np.sum(term) / len(X)return grad

相关文章:

机器学习复习(8)——逻辑回归

目录 逻辑函数(Logistic Function) 逻辑回归模型的假设函数 从逻辑回归模型转换到最大似然函数过程 最大似然函数方法 梯度下降 逻辑函数(Logistic Function) 首先,逻辑函数,也称为Sigmoid函数&#…...

深入解析MySQL 8:事务数据字典的变革

随着数据库技术的不断发展和完善,元数据的管理成为了一个日益重要的议题。在MySQL 8中,一项引人注目的新特性是引入了事务数据字典(Transaction Data Dictionary,简称TDD),它改变了元数据的管理方式&#x…...

jquery写表格,通过后端传值,并合并单元格

<!DOCTYPE html> <html> <head><title>Table Using jQuery</title><style>#tableWrapper {width: 100%;height: 200px; /* 设置表格容器的高度 */overflow: auto; /* 添加滚动条 */margin-top: -10px; /* 负的外边距值&#xff0c;根据实际…...

百家cms代审

参考博客&#xff1a; PHP代码审计之旅之百家CMS-腾讯云开发者社区-腾讯云 环境搭建 源码链接如下所示 https://gitee.com/openbaijia/baijiacms 安装至本地后 直接解压到phpstudy的www目录下即可 接下来去创建一个数据库用于存储CMS信息。&#xff08;在Mysql命令行中执行…...

算法学习——LeetCode力扣二叉树篇3

算法学习——LeetCode力扣二叉树篇3 116. 填充每个节点的下一个右侧节点指针 116. 填充每个节点的下一个右侧节点指针 - 力扣&#xff08;LeetCode&#xff09; 描述 给定一个 完美二叉树 &#xff0c;其所有叶子节点都在同一层&#xff0c;每个父节点都有两个子节点。二叉树…...

强制卸载挂载目录

当遇到磁盘卸载失败提示 device is busy fuser -a 显示所有命令行中指定的文件&#xff0c;默认情况下被访问的文件才会被显示。 -c 和-m一样&#xff0c;用于POSIX兼容。 -k 杀掉访问文件的进程。如果没有指定-signal就会发送SIGKILL信号。结合 –signal -signal 使用指定的信…...

HiveSQL——sum(if()) 条件累加

注&#xff1a;参考文章&#xff1a; HiveSql面试题10--sum(if)统计问题_hive sum if-CSDN博客文章浏览阅读5.8k次&#xff0c;点赞6次&#xff0c;收藏19次。0 需求分析t_order表结构字段名含义oid订单编号uid用户idotime订单时间&#xff08;yyyy-MM-dd&#xff09;oamount订…...

Linux命令行工具使用HTTP代理的方法详解

亲爱的Linux用户们&#xff0c;有没有想过在命令行世界里&#xff0c;你的每一个指令都能悄无声息地穿越千山万水&#xff0c;而不被外界窥探&#xff1f;哈哈&#xff0c;没错&#xff0c;就是通过HTTP代理&#xff01;今天&#xff0c;我们就来一起探索如何在Linux命令行工具…...

idea mavn 中途新建gitignore文件如何生效

两种情况下项目代码中新建gitignore文件如何生效。 第一种情况项目代码下没有模块的情况 直接在该项目代码的根目录下进入git命令行执行&#xff1a; git rm -r --cached . git add . 注意上面两个命令后面都有一个点 第二种情况是有模块的情况 需要进入模块目录执行上…...

Hadoop:认识MapReduce

MapReduce是一个用于处理大数据集的编程模型和算法框架。其优势在于能够处理大量的数据&#xff0c;通过并行化来加速计算过程。它适用于那些可以分解为多个独立子任务的计算密集型作业&#xff0c;如文本处理、数据分析和大规模数据集的聚合等。然而&#xff0c;MapReduce也有…...

9.4 OpenGL帧缓冲:纹理和帧缓冲之间的反馈循环

纹理和帧缓冲之间的反馈循环 Feedback Loops Between Textures and the Framebuffer 当在图形编程中&#xff0c;特别是OpenGL这样的图形API中处理纹理&#xff08;Texture&#xff09;和帧缓冲区&#xff08;Framebuffer&#xff09;时&#xff0c;可能会出现一种称为“反馈循…...

相机图像质量研究(6)常见问题总结:光学结构对成像的影响--对焦距离

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…...

fast.ai 机器学习笔记(二)

机器学习 1&#xff1a;第 5 课 原文&#xff1a;medium.com/hiromi_suenaga/machine-learning-1-lesson-5-df45f0c99618 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它&#xff0c;这些笔记将继续更…...

vue3 elementplus DateTimePicker 日期时间设置默认时间为当天

DateTimePicker里面有个自带属性 可以实现这个需求&#xff0c;如图&#xff1a; // 设置当前当天时间范围 00: 00: 00 - 23:59:59 const currentDate [setDefaultDate(0), setDefaultDate(1)]const setDefaultDate (type:number ): string > {let t ;let date new Da…...

2024年笔记--centos docker离线安装启动失败

Failed to start Docker Application Container Engine 错误如下&#xff1a; [rootel70 docker]# systemctl start docker.service Job for docker.service failed because start of the service was attempted too often. See "systemctl status docker.service" …...

2024.2.10 DMS(数据库管理系统)初体验

数据库管理系统(Database Management System)是一种操纵和管理数据库的大型软件&#xff0c;用于建立、使用和维护数据库&#xff0c;简称DBMS。它对数据库进行统一的管理和控制&#xff0c;以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据&#xff0c;数据库管…...

zk集群--集群同步

1.概述 前面一章分析了集群下启动阶段选举过程&#xff0c;一旦完成选举&#xff0c;通过执行QuorumPeer的setPeerState将设置好选举结束后自身的状态。然后&#xff0c;将再次执行QuorumPeer的run的新的一轮循环&#xff0c; QuorumPeer的run的每一轮循环&#xff0c;先判断…...

复习面经哦

1.函数可以变量提升 JavaScript 中的函数存在变量提升的概念&#xff0c;这意味着在执行代码之前&#xff0c;函数声明会被提升到其作用域的顶部。这使得你可以在函数声明之前调用函数。然而&#xff0c;这种行为只适用于函数声明&#xff0c;而不是函数表达式。 下面是一些关…...

c++ STL系列——(二)vector

引言 在现代C编程中&#xff0c;std::vector是最常用的动态数组实现之一&#xff0c;它是C标准模板库&#xff08;STL&#xff09;的一部分。vector提供了一种方式&#xff0c;以单一数据结构来存储元素集合&#xff0c;并且可以动态地调整大小以适应新元素。本文将深入探讨ve…...

STM32能够做到数据采集和发送同时进行吗?

STM32能够做到数据采集和发送同时进行吗&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「STM32的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&am…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...