当前位置: 首页 > news >正文

MongoDB聚合:$unionWith

$unionWith聚合阶段执行两个集合的合并,将两个集合的管道结果合并到一个结果集传送到下一个阶段。合并后的结果文档的顺序是不确定的。

语法

{ $unionWith: { coll: "<collection>", pipeline: [ <stage1>, ... ] } }

要包含集合的所有文档不进行任何处理,可以使用简化形式:

{ $unionWith: "<collection>" }  // 包含指定集合的所有文档

使用

参数字段:

字段描述
coll希望在结果集中包含的集合或视图管道的结果
pipeline可选,应用于coll的聚合管道[<stage1>, <stage2>, ....],聚合管道不能包含$out$merge阶段。从v6.0开始,管道可以在第一个阶段包含$search阶段

$unionWith操作等价于下面的SQL语句:

SELECT *
FROM Collection1
WHERE ...
UNION ALL
SELECT *
FROM Collection2
WHERE ...

重复的结果

前一阶段的合并结果和$unionWith阶段的合并结果可能包含重复结果。例如,创建一个suppliers 集合和一个warehouses 集合:

db.suppliers.insertMany([{ _id: 1, supplier: "Aardvark and Sons", state: "Texas" },{ _id: 2, supplier: "Bears Run Amok.", state: "Colorado"},{ _id: 3, supplier: "Squid Mark Inc. ", state: "Rhode Island" },
])
db.warehouses.insertMany([{ _id: 1, warehouse: "A", region: "West", state: "California" },{ _id: 2, warehouse: "B", region: "Central", state: "Colorado"},{ _id: 3, warehouse: "C", region: "East", state: "Florida" },
])

下面的聚合合并了聚合supplierswarehouse的state’字段投影结果。

db.suppliers.aggregate([{ $project: { state: 1, _id: 0 } },{ $unionWith: { coll: "warehouses", pipeline: [ { $project: { state: 1, _id: 0 } } ]} }
])

结果包含重复的文档

{ "state" : "Texas" }
{ "state" : "Colorado" }
{ "state" : "Rhode Island" }
{ "state" : "California" }
{ "state" : "Colorado" }
{ "state" : "Florida" }

要要去除重复,可以加个$group阶段,按照state字段分组:

db.suppliers.aggregate([{ $project: { state: 1, _id: 0 } },{ $unionWith: { coll: "warehouses", pipeline: [ { $project: { state: 1, _id: 0 } } ]} },{ $group: { _id: "$state" } }
])

这样结果就没有重复的文档了:

 { "_id" : "California" }{ "_id" : "Texas" }{ "_id" : "Florida" }{ "_id" : "Colorado" }{ "_id" : "Rhode Island" }

$unionWith 分片集合

如果$unionWith阶段是$lookup管道的一部分,则$unionWithcoll被分片。例如,在下面的聚合操作中,不能对inventory_q1集合进行分片:

db.suppliers.aggregate([{$lookup: {from: "warehouses",let: { order_item: "$item", order_qty: "$ordered" },pipeline: [...{ $unionWith: { coll: "inventory_q1", pipeline: [ ... ] } },...],as: "stockdata"}}
])

限制

  • 聚合管道不能在事务中使用$unionWith
  • 如果$unionWith阶段是$lookup管道的一部分,则$unionWith的集合不能被分片
  • unionWith管道不能包含out阶段
  • unioWith管道不能包含merge阶段

举例

用多年的数据集合创建销售报告

下面示例使用$unionWith阶段来合并数据并返回多个集合的结果,在这些示例中,每个集合都包含一年的销售数据。

填充样本数据:

分别创建sales_2017sales_2018sales_2019sales_2019四个集合并填充数据:

db.sales_2017.insertMany( [{ store: "General Store", item: "Chocolates", quantity: 150 },{ store: "ShopMart", item: "Chocolates", quantity: 50 },{ store: "General Store", item: "Cookies", quantity: 100 },{ store: "ShopMart", item: "Cookies", quantity: 120 },{ store: "General Store", item: "Pie", quantity: 10 },{ store: "ShopMart", item: "Pie", quantity: 5 }
] )
db.sales_2018.insertMany( [{ store: "General Store", item: "Cheese", quantity: 30 },{ store: "ShopMart", item: "Cheese", quantity: 50 },{ store: "General Store", item: "Chocolates", quantity: 125 },{ store: "ShopMart", item: "Chocolates", quantity: 150 },{ store: "General Store", item: "Cookies", quantity: 200 },{ store: "ShopMart", item: "Cookies", quantity: 100 },{ store: "ShopMart", item: "Nuts", quantity: 100 },{ store: "General Store", item: "Pie", quantity: 30 },{ store: "ShopMart", item: "Pie", quantity: 25 }
] )
db.sales_2019.insertMany( [{ store: "General Store", item: "Cheese", quantity: 50 },{ store: "ShopMart", item: "Cheese", quantity: 20 },{ store: "General Store", item: "Chocolates", quantity: 125 },{ store: "ShopMart", item: "Chocolates", quantity: 150 },{ store: "General Store", item: "Cookies", quantity: 200 },{ store: "ShopMart", item: "Cookies", quantity: 100 },{ store: "General Store", item: "Nuts", quantity: 80 },{ store: "ShopMart", item: "Nuts", quantity: 30 },{ store: "General Store", item: "Pie", quantity: 50 },{ store: "ShopMart", item: "Pie", quantity: 75 }
] )
db.sales_2020.insertMany( [{ store: "General Store", item: "Cheese", quantity: 100, },{ store: "ShopMart", item: "Cheese", quantity: 100},{ store: "General Store", item: "Chocolates", quantity: 200 },{ store: "ShopMart", item: "Chocolates", quantity: 300 },{ store: "General Store", item: "Cookies", quantity: 500 },{ store: "ShopMart", item: "Cookies", quantity: 400 },{ store: "General Store", item: "Nuts", quantity: 100 },{ store: "ShopMart", item: "Nuts", quantity: 200 },{ store: "General Store", item: "Pie", quantity: 100 },{ store: "ShopMart", item: "Pie", quantity: 100 }
] )

按照year、store和item的销售额

db.sales_2017.aggregate( [{ $set: { _id: "2017" } },{ $unionWith: { coll: "sales_2018", pipeline: [ { $set: { _id: "2018" } } ] } },{ $unionWith: { coll: "sales_2019", pipeline: [ { $set: { _id: "2019" } } ] } },{ $unionWith: { coll: "sales_2020", pipeline: [ { $set: { _id: "2020" } } ] } },{ $sort: { _id: 1, store: 1, item: 1 } }
] )
  • $set阶段用于更新_id字段,使其包含年份
  • $unionWith阶段,将四个集合中的所有文档合并在一起,每个文档也使用$set阶段
  • $sort阶段,按照_id(年份)、storeitem进行排序

管道输出:

{ "_id" : "2017", "store" : "General Store", "item" : "Chocolates", "quantity" : 150 }
{ "_id" : "2017", "store" : "General Store", "item" : "Cookies", "quantity" : 100 }
{ "_id" : "2017", "store" : "General Store", "item" : "Pie", "quantity" : 10 }
{ "_id" : "2017", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 50 }
{ "_id" : "2017", "store" : "ShopMart", "item" : "Cookies", "quantity" : 120 }
{ "_id" : "2017", "store" : "ShopMart", "item" : "Pie", "quantity" : 5 }
{ "_id" : "2018", "store" : "General Store", "item" : "Cheese", "quantity" : 30 }
{ "_id" : "2018", "store" : "General Store", "item" : "Chocolates", "quantity" : 125 }
{ "_id" : "2018", "store" : "General Store", "item" : "Cookies", "quantity" : 200 }
{ "_id" : "2018", "store" : "General Store", "item" : "Pie", "quantity" : 30 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Cheese", "quantity" : 50 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 150 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Cookies", "quantity" : 100 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Nuts", "quantity" : 100 }
{ "_id" : "2018", "store" : "ShopMart", "item" : "Pie", "quantity" : 25 }
{ "_id" : "2019", "store" : "General Store", "item" : "Cheese", "quantity" : 50 }
{ "_id" : "2019", "store" : "General Store", "item" : "Chocolates", "quantity" : 125 }
{ "_id" : "2019", "store" : "General Store", "item" : "Cookies", "quantity" : 200 }
{ "_id" : "2019", "store" : "General Store", "item" : "Nuts", "quantity" : 80 }
{ "_id" : "2019", "store" : "General Store", "item" : "Pie", "quantity" : 50 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Cheese", "quantity" : 20 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 150 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Cookies", "quantity" : 100 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Nuts", "quantity" : 30 }
{ "_id" : "2019", "store" : "ShopMart", "item" : "Pie", "quantity" : 75 }
{ "_id" : "2020", "store" : "General Store", "item" : "Cheese", "quantity" : 100 }
{ "_id" : "2020", "store" : "General Store", "item" : "Chocolates", "quantity" : 200 }
{ "_id" : "2020", "store" : "General Store", "item" : "Cookies", "quantity" : 500 }
{ "_id" : "2020", "store" : "General Store", "item" : "Nuts", "quantity" : 100 }
{ "_id" : "2020", "store" : "General Store", "item" : "Pie", "quantity" : 100 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Cheese", "quantity" : 100 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Chocolates", "quantity" : 300 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Cookies", "quantity" : 400 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Nuts", "quantity" : 200 }
{ "_id" : "2020", "store" : "ShopMart", "item" : "Pie", "quantity" : 100 }

根据item汇总销售额

db.sales_2017.aggregate( [{ $unionWith: "sales_2018" },{ $unionWith: "sales_2019" },{ $unionWith: "sales_2020" },{ $group: { _id: "$item", total: { $sum: "$quantity" } } },{ $sort: { total: -1 } }
] )
  • $unionWith阶段将文档从指定的集合检索到管道中
  • $group阶段按item字段分组,并使用$sum计算每个item的总销售量
  • $sort阶段按合计降序排列文档

结果:

{ "_id" : "Cookies", "total" : 1720 }
{ "_id" : "Chocolates", "total" : 1250 }
{ "_id" : "Nuts", "total" : 510 }
{ "_id" : "Pie", "total" : 395 }
{ "_id" : "Cheese", "total" : 350 }

相关文章:

MongoDB聚合:$unionWith

$unionWith聚合阶段执行两个集合的合并&#xff0c;将两个集合的管道结果合并到一个结果集传送到下一个阶段。合并后的结果文档的顺序是不确定的。 语法 { $unionWith: { coll: "<collection>", pipeline: [ <stage1>, ... ] } }要包含集合的所有文档不…...

人工智能三子棋-人机对弈-人人对弈,谁会是最终赢家?

✅作者简介&#xff1a;大家好我是原始豌豆&#xff0c;感谢支持。 &#x1f194;本文由 原始豌豆 原创 CSDN首发&#x1f412; 如需转载还请通知⚠ &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​ &#x1f4e3;系列专栏&#xff1a;C语言项目实践…...

【leetcode热题100】反转链表 II

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1a;[1,4,3,2…...

谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比&#xff0c;ALOHA 2 具有更强的性能、人体工程学设计和稳健性&#xff0c;且成本还不到 20 万元人民币。并且&#xff0c;为了加速大规模双手操作的研究&#xff0c;ALOHA 2 相关的所有硬件设计全部开…...

金融行业专题|证券超融合架构转型与场景探索合集(2023版)

更新内容 更新 SmartX 超融合在证券行业的覆盖范围、部署规模与应用场景。新增操作系统信创转型、Nutanix 国产化替代、网络与安全等场景实践。更多超融合金融核心生产业务场景实践&#xff0c;欢迎阅读文末电子书。 在金融行业如火如荼的数字化转型大潮中&#xff0c;传统架…...

【C语言】C的整理记录

前言 该笔记是建立在已经系统学习过C语言的基础上&#xff0c;笔者对C语言的知识和注意事项进行整理记录&#xff0c;便于后期查阅&#xff0c;反复琢磨。C语言是一种面向过程的编程语言。 原想在此阐述一下C语言的作用&#xff0c;然而发觉这些是编程语言所共通的作用&#…...

使用STM32Cubemx创建一个工程并且给出每一步的含义

...

C/C++模板初阶

目录 1. 泛型编程 2. 函数模板 2.1 函数模板概念 2.1 函数模板格式 2.3 函数模板的原理 2.4 函数模板的实例化 2.5 模板参数的匹配原则 3. 类模板 3.1 类模板的定义格式 3.2 类模板的实例化 1. 泛型编程 如何实现一个通用的交换函数呢&#xff1f; void Swap(int&…...

linux系统下vscode portable版本的c++/Cmake环境搭建001

linux系统下vscode portable版本的Cmake环境搭建 vscode portable 安装安装基本工具安装 build-essential安装 CMake final script code安装插件CMake Tools & cmakeC/C Extension Pack Testsettings,jsonCMakeLists.txt调试和运行工具 CG 目的&#xff1a;希望在获得一个新…...

【QT+QGIS跨平台编译】之三十一:【FreeXL+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、FreeXL介绍二、文件下载三、文件分析四、pro文件五、编译实践一、FreeXL介绍 【FreeXL跨平台编译】:Windows环境下编译成果(支撑QGIS跨平台编译,以及二次研发) 【FreeXL跨平台编译】:Linux环境下编译成果(支撑QGIS跨平台编译,以及二次研发) 【FreeXL跨平台…...

2024年 前端JavaScript入门到精通 第一天

主要讲解JavaScript核心知识&#xff0c;包含最新ES6语法&#xff0c;从基础到API再到高级。让你一边学习一边练习&#xff0c;重点知识及时实践&#xff0c;同时每天安排大量作业&#xff0c;加深记忆&#xff0c;巩固学习成果。 1.1 基本软件与准备工作 1.2 JavaScript 案例 …...

155基于matlab 的形态学权重自适应图像去噪

基于matlab 的形态学权重自适应图像去噪&#xff1b;通过串并联的滤波降噪对比图&#xff0c;说明并联降噪的优越性。输出降噪前后图像和不同方法的降噪情况的信噪比。程序已调通&#xff0c;可直接运行。 155matlab 自适应图像降噪 串并联降噪 (xiaohongshu.com)...

操作系统——内存管理(附带Leetcode算法题LRU)

目录 1.内存管理主要用来干什么&#xff1f; 2.什么是内存碎片&#xff1f; 3.虚拟内存 3.1传统存储管理方式的缺点&#xff1f; 3.2局部性原理 3.3什么是虚拟内存&#xff1f;有什么用&#xff1f; 3.3.1段式分配 3.3.2页式分配 3.3.2.1换页机制 3.3.2.2页面置换算法…...

I/O多路复用简记

IO多路复用&#xff08;服务器如何处理多个socket的同时数据传输&#xff09;&#xff1a;1、select。2、poll。3、epoll。 select使用bitmap存socket文件描述符&#xff0c;由bitmap槽位的每一位为0或1决定对应序的socket连接是否有数据到来。由单线程&#xff08;多线程处理每…...

SPECCPU2017操作说明

1、依赖包下载 yum install gcc* gfortran* 2、将软件包放至被测机器 3、增加权限 chmod X install.sh 4、运行安装 ./install.sh 5、运行 引入编译时所需的环境变量和相关库文件 source shrc 进入/spec2017&#xff0c;执行 ./runcpu -c ../config/Example-gcc-linux-ar…...

openresty (nginx)快速开始

文章目录 一、什么是openresty&#xff1f;二、openresty编译安装1. 编译安装命令1.1 编译完成后路径1.2 常用编译选项解释 2. nginx配置文件配置2.1 nginx.conf模板 3. nginx常见配置一个站点配置多个域名nginx配置中location匹配规则 三、OpenResty工作原理OpenResty工作原理…...

相机图像质量研究(11)常见问题总结:光学结构对成像的影响--像差

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…...

【深度学习】基于多层感知机的手写数字识别

案例2&#xff1a;构建自己的多层感知机: MNIST手写数字识别 相关知识点: numpy科学计算包&#xff0c;如向量化操作&#xff0c;广播机制等 1 任务目标 1.1 数据集简介 ​ MNIST手写数字识别数据集是图像分类领域最常用的数据集之一&#xff0c;它包含60,000张训练图片&am…...

给定n,m(200),构造一个n*m的矩阵a,使得每个4*4的子矩阵,左上角2*2的子矩阵的异或和等于右下角的,左下角的异或和等于右上角的

题目 #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e18 5, maxm 4e4 5, mod 998244353…...

【开源】基于JAVA+Vue+SpringBoot的假日旅社管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统介绍2.2 QA 问答 三、系统展示四、核心代码4.1 查询民宿4.2 新增民宿评论4.3 查询民宿新闻4.4 新建民宿预订单4.5 查询我的民宿预订单 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的假日旅社…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

MySQL体系架构解析(三):MySQL目录与启动配置全解析

MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录&#xff0c;这个目录下存放着许多可执行文件。与其他系统的可执行文件类似&#xff0c;这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中&#xff0c;用…...