当前位置: 首页 > news >正文

Python爬虫之Ajax数据爬取基本原理

前言

有时候我们在用 requests 抓取页面的时候,得到的结果可能和在浏览器中看到的不一样:在浏览器中可以看到正常显示的页面数据,但是使用 requests 得到的结果并没有。这是因为 requests 获取的都是原始的 HTML 文档,而浏览器中的页面则是经过 JavaScript 处理数据后生成的结果,这些数据的来源有多种,可能是通过 Ajax 加载的,可能是包含在 HTML 文档中的,也可能是经过 JavaScript 和特定算法计算后生成的。

对于第一种情况,数据加载是一种异步加载方式,原始的页面最初不会包含某些数据,原始页面加载完后,会再向服务器请求某个接口获取数据,然后数据才被处理从而呈现到网页上,这其实就是发送了一个 Ajax 请求。

照 Web 发展的趋势来看,这种形式的页面越来越多。网页的原始 HTML 文档不会包含任何数据,数据都是通过 Ajax 统一加载后再呈现出来的,这样在 Web 开发上可以做到前后端分离,而且降低服务器直接渲染页面带来的压力。

所以如果遇到这样的页面,直接利用 requests 等库来抓取原始页面,是无法获取到有效数据的,这时需要分析网页后台向接口发送的 Ajax 请求,如果可以用 requests 来模拟 Ajax 请求,那么就可以成功抓取了。

所以,本章我们的主要目的是了解什么是 Ajax 以及如何去分析和抓取 Ajax 请求。

什么是 Ajax

Ajax,全称为 Asynchronous JavaScript and XML,即异步的 JavaScript 和 XML。它不是一门编程语言,而是利用 JavaScript 在保证页面不被刷新、页面链接不改变的情况下与服务器交换数据并更新部分网页的技术。

对于传统的网页,如果想更新其内容,那么必须要刷新整个页面,但有了 Ajax,便可以在页面不被全部刷新的情况下更新其内容。在这个过程中,页面实际上是在后台与服务器进行了数据交互,获取到数据之后,再利用 JavaScript 改变网页,这样网页内容就会更新了。

可以到 W3School 上体验几个 Demo 来感受一下:AJAX - XMLHttpRequest。

1. 实例引入

浏览网页的时候,我们会发现很多网页都有下滑查看更多的选项。比如,拿微博来说,以我的主页为例:微博,切换到微博页面,一直下滑,可以发现下滑几个微博之后,再向下就没有了,转而会出现一个加载的动画,不一会儿下方就继续出现了新的微博内容,这个过程其实就是 Ajax 加载的过程,如图所示。

页面加载过程

我们注意到页面其实并没有整个刷新,也就意味着页面的链接没有变化,但是网页中却多了新内容,也就是后面刷出来的新微博。这就是通过 Ajax 获取新数据并呈现的过程。

2. 基本原理

初步了解了 Ajax 之后,我们再来详细了解它的基本原理。发送 Ajax 请求到网页更新的这个过程可以简单分为以下 3 步:

  • 发送请求

  • 解析内容

  • 渲染网页

下面我们分别来详细介绍一下这几个过程。

发送请求

我们知道 JavaScript 可以实现页面的各种交互功能,Ajax 也不例外,它也是由 JavaScript 实现的,实际上执行了如下代码:

var xmlhttp;
if (window.XMLHttpRequest) {//code for IE7+, Firefox, Chrome, Opera, Safarixmlhttp=new XMLHttpRequest();} else {//code for IE6, IE5xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.onreadystatechange=function() {if (xmlhttp.readyState==4 && xmlhttp.status==200) {document.getElementById("myDiv").innerHTML=xmlhttp.responseText;}
}
xmlhttp.open("POST","/ajax/",true);
xmlhttp.send();

这是 JavaScript 对 Ajax 最底层的实现,实际上就是新建了 XMLHttpRequest 对象,然后调用 onreadystatechange 属性设置了监听,然后调用 open() 和 send() 方法向某个链接(也就是服务器)发送了请求。前面用 Python 实现请求发送之后,可以得到响应结果,但这里请求的发送变成 JavaScript 来完成。由于设置了监听,所以当服务器返回响应时,onreadystatechange 对应的方法便会被触发,然后在这个方法里面解析响应内容即可。

解析内容

得到响应之后,onreadystatechange 属性对应的方法便会被触发,此时利用 xmlhttp 的 responseText 属性便可取到响应内容。这类似于 Python 中利用 requests 向服务器发起请求,然后得到响应的过程。那么返回内容可能是 HTML,可能是 JSON,接下来只需要在方法中用 JavaScript 进一步处理即可。比如,如果是 JSON 的话,可以进行解析和转化。

渲染网页

JavaScript 有改变网页内容的能力,解析完响应内容之后,就可以调用 JavaScript 来针对解析完的内容对网页进行下一步处理了。比如,通过 document.getElementById().innerHTML 这样的操作,便可以对某个元素内的源代码进行更改,这样网页显示的内容就改变了,这样的操作也被称作 DOM 操作,即对 Document 网页文档进行操作,如更改、删除等。

上例中,document.getElementById("myDiv").innerHTML=xmlhttp.responseText 便将 ID 为 myDiv 的节点内部的 HTML 代码更改为服务器返回的内容,这样 myDiv 元素内部便会呈现出服务器返回的新数据,网页的部分内容看上去就更新了。

我们观察到,这 3 个步骤其实都是由 JavaScript 完成的,它完成了整个请求、解析和渲染的过程。

再回想微博的下拉刷新,这其实就是 JavaScript 向服务器发送了一个 Ajax 请求,然后获取新的微博数据,将其解析,并将其渲染在网页中。

因此,我们知道,真实的数据其实都是一次次 Ajax 请求得到的,如果想要抓取这些数据,需要知道这些请求到底是怎么发送的,发往哪里,发了哪些参数。如果我们知道了这些,不就可以用 Python 模拟这个发送操作,获取到其中的结果了吗?

在下一章中,我们将会了解哪里可以看到这些后台 Ajax 操作,了解它到底是怎么发送的,发送了什么参数。

相关文章:

Python爬虫之Ajax数据爬取基本原理

前言 有时候我们在用 requests 抓取页面的时候,得到的结果可能和在浏览器中看到的不一样:在浏览器中可以看到正常显示的页面数据,但是使用 requests 得到的结果并没有。这是因为 requests 获取的都是原始的 HTML 文档,而浏览器中…...

osg操控器和键盘切换操控器学习

osg提供了很多操控器,在src\osgGA目录下,cpp文件名含有Manipulator的都是操控器,每个这样的cpp表示一种类型的操控器。 名字带 Manipulator 的类都是操控器; 其中KeySwitchMatrixManipulator.cpp文件实现了键盘切换操控器; 操控器是指:操控相机运动,从而实现场景视图…...

LeetCode1143. Longest Common Subsequence——动态规划

文章目录 一、题目二、题解 一、题目 Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0. A subsequence of a string is a new string generated from the original string with so…...

利用Windows10漏洞破解密码(保姆级教学)

前言: 本篇博客只是技术分享并非非法传播知识,实验内容均是在虚拟机中进行,并非真实环境 正文: 一.windows10电脑密码破解 1)开启windows10虚拟机,停留在这个页面 2)按5次Shift键,出现这个粘滞键,如果没有出现的,则说明漏洞已经修复 3)重新启动,在这个页面的时候…...

apk反编译修改教程系列---简单修改apk默认横竖屏显示 手机端与电脑端同步演示【十一】

往期教程: apk反编译修改教程系列-----修改apk应用名称 任意修改名称 签名【一】 apk反编译修改教程系列-----任意修改apk版本号 版本名 防止自动更新【二】 apk反编译修改教程系列-----修改apk中的图片 任意更换apk桌面图片【三】 apk反编译修改教程系列---简单…...

2301: 不定方程解的个数

题目描述 输出不定方程解的个数。在数学中,不定方程是数论中的一个重要课题,在各种比赛中也常常出现. 对于不定方程,有时我们往往只求非负整数解,现有方程axbyc0,其中x、y为未知量且不超过10000,当给定a、…...

vue3学习——封装菜单栏

/Layout/Sidebar/index.vue <script setup lang"ts"> import Sidebar from ./Sidebar.vue // 在下面的代码里 import { useRoute } from vue-router import useUserStore from /store/modules/user.ts // state中存放菜单数据 import useLayoutSetting from /…...

深度学习的进展及其在各领域的应用

深度学习&#xff0c;作为人工智能的核心分支&#xff0c;近年来在全球范围内引起了广泛的关注和研究。它通过模拟人脑的学习机制&#xff0c;构建复杂的神经网络结构&#xff0c;从大量数据中学习并提取有用的特征表示&#xff0c;进而解决各种复杂的模式识别问题。 一、深度…...

blender怎么保存窗口布局,怎么设置默认输出文件夹

进行窗口布局大家都会&#xff0c;按照自己喜好来就行了&#xff0c;设置输出文件夹如图 这些其实都简单。关键问题在于&#xff0c;自己调好了窗口布局&#xff0c;或者设置好了输出文件夹之后&#xff0c;怎么能让blender下次启动的时候呈现出自己设置好的窗口布局&#xff…...

【开源】基于JAVA+Vue+SpringBoot的实验室耗材管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 耗材档案模块2.2 耗材入库模块2.3 耗材出库模块2.4 耗材申请模块2.5 耗材审核模块 三、系统展示四、核心代码4.1 查询耗材品类4.2 查询资产出库清单4.3 资产出库4.4 查询入库单4.5 资产入库 五、免责说明 一、摘要 1.1…...

【ES】--Elasticsearch的分词器详解

目录 一、前言二、分词器原理1、常用分词器2、ik分词器模式3、指定索引的某个字段进行分词测试3.1、采用ts_match_analyzer进行分词3.2、采用standard_analyzer进行分词三、如何调整分词器1、已存在的索引调整分词器2、特别的词语不能被拆开一、前言 最近项目需求,针对客户提…...

【算法】{画决策树 + dfs + 递归 + 回溯 + 剪枝} 解决排列、子集问题(C++)

文章目录 1. 前言2. 算法例题 理解思路、代码46.全排列78.子集 3. 算法题练习1863.找出所有子集的异或总和再求和47.全排列II17.电话号码的字母组合 1. 前言 dfs问题 我们已经学过&#xff0c;对于排列、子集类的问题&#xff0c;一般可以想到暴力枚举&#xff0c;但此类问题用…...

sqlserver 存储过程

在 SQL Server 中&#xff0c;存储过程&#xff08;Stored Procedure&#xff09;是一种预编译的 SQL 代码块&#xff0c;可以接受参数&#xff0c;执行一系列 SQL 语句&#xff0c;并返回一个或多个结果集。存储过程可以看作是一种封装了 SQL 语句的函数&#xff0c;可以在需要…...

C语言什么是悬空指针?

一、问题 什么是悬空指针&#xff1f;为什么会出现&#xff1f;我们该如何避免悬空指针的出现&#xff1f; 二、解答 在C语言中&#xff0c;悬空指针指的是指向已删除&#xff08;或释放&#xff09;的内存位置的指针。如果一个指针指向的内存被释放&#xff0c;但指针本身并未…...

AES加密后的密码可以破解吗

AES&#xff08;高级加密标准&#xff09;是一种广泛使用的对称加密算法&#xff0c;设计用来抵御各种已知的攻击方法。AES使用固定块大小的加密块和密钥长度&#xff0c;通常是128、192或256位。它被认为是非常安全的&#xff0c;到目前为止&#xff0c;没有已知的可行方法能够…...

vue3学习——路由进度条

安装 pnpm i nprogress创建permission.ts import router from /router/index.ts import NProgress from nprogress import nprogress/nprogress.css // 不加样式不显示 NProgress.configure({ showSpinner: false }) router.beforeEach((to, from, next) > {console.log(t…...

VMware虚拟机安装Windows系统教程

前言 今天给小伙伴分享一个安装Windows系统的教程&#xff0c;本教程适用于WindowsXP/7/8/8.1/10。 安装的系统前需要先检查一下你的电脑硬件环境&#xff0c;每个系统的硬件要求都不一样哦&#xff5e; 硬件要求指的是你的电脑主机的配置&#xff0c;如果低于这个配置的&am…...

vue3学习——router-view 过渡动画

虽然vue3说建vue页面不用包裹一个根节点&#xff0c;但是transition不能没有唯一的标签 所以还是得包一层~ o(&#xffe3;▽&#xffe3;)o <el-main><router-view v-slot"{ Component, route }"><transition name"MainFade" mode"o…...

从HSE攻击事件漫谈针对勒索攻击防御的两大误区

前言 HSE遭到严重的勒索软件攻击&#xff0c;爱尔兰的医疗服务系统是该国的公共资助医疗系统&#xff0c;在受到勒索病毒攻击之后&#xff0c;被迫在上周五关闭其 IT 系统&#xff0c;以此作为预防措施&#xff0c;避免威胁扩散。该事件导致该国家多家医院的服务取消和中断&am…...

设计模式(结构型模式)外观模式

目录 一、简介二、外观模式2.1、子系统2.2、外观类2.3、使用 三、优点与缺点 一、简介 外观模式&#xff08;Facade Pattern&#xff09;是一种结构型设计模式&#xff0c;提供了一个统一的接口&#xff0c;用于访问子系统中的一组接口。这个模式隐藏了子系统的复杂性&#xff…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...