【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理
摘要 | Abstract
这是一篇对语音识别中的一种热门技术——DNN-HMM混合系统原理的透彻介绍。本文自2月10日开始撰写,计划一星期内写完。
1.前言 | Introduction
近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型,但是尽管网络上有许多关于DNN-HMM的介绍,如李宏毅教授的《深度学习人类语言处理》[1],一些博主的语音识别系列文章[2],斯坦福大学HMM课件[3]。但是这些材料要么不够细致完备,要么对初学者来说过于复杂深奥(尤以HMM部分的琳琅满目的概率公式为首)。
因此,笔者在阅读了大量相关资料后希望用深入浅出的方式为大家系统地介绍DNN-HMM混合模型。本文旨在为零基础者从头解析使用DNN-HMM混合方法的语音识别系统的底层原理。
笔者希望让仅仅具备本科概率论基础的人也能读懂,如果你符合这个条件但仍觉得理解起来困难,你可以留下你的疑惑,以帮助我们改进文章。
2.问题描述 | Problem Statement
我们直入主题,语音识别模型是这样一个模型,它将一串语音信号(如一个仅包含语音的.wav音频文件)作为模型的输入,目的在于输出一个与之最为匹配的文字内容
(为了简化问题,本文只考虑英文场景,其它语言原理基本类似)。其中,当我们说“最为匹配”的时候,我们主要考虑的是“最有可能”的,亦即,语音识别模型希望在给定
时,给出
,使得:
,
上式意味着,我们要找使得最大的
,记作
。
要解决这个问题,一个最直观的办法就是穷举所有可能的,然后比一比他们的概率
,再选出最大的那一个。显然这个想法是不现实的,因为所有可能的
也许是一个无穷的集合。再者,就算能够缩小范围,枚举出大量比较可能的候选
,又如何比较概率
的大小呢?因而枚举法似乎不是好的选择。
HMM类的方法则选择使用贝叶斯理论对概率进行处理,这我们在后面会详细说明。在此之前,笔者想为大家简单讲讲其它的更清晰的解决思路。
3.相关研究 | Related Work
得益于今日神经网络技术的快速发展,熟悉深度学习的我们很容易联想到,似乎只要利用大量的音频以及对应的文本标注进行训练,不需要额外的人工处理应该也能做到很好的泛化能力(即拿到新的语音信号时可以准确地给出真实的文字答案)吧?
答案是:确实有,这种办法被称为Listen Attend, and Spell,简称LAS[4]。它使用一个深度学习模型,直接用声音信号和人工标记的文字训练,在推理时听到新的声音信号就能给出它认为最匹配的文字内容。由于直接输入音频信号就能推理出其中的文字
,LAS被归为端到端(End to End)模型。
不得不说,LAS这种方法确实是最符合(机器学习研究者的)直觉的,就像其它任何的机器学习任务(如图像识别)一样,训练和推理再好理解不过了。
除了即将要介绍的HMM类模型,LAS、Transformer[5],还有CTC[6],RNN-T[7]等。这些内容不是本文的重点,就不一一介绍了。
尽管LAS等端到端模型操作非常简单无脑,但是在过去的很长一段时间内,这些堪称暴力的方法并没有想象中的那么强。至少在2020年时,商业语音识别系统的主力军还是咱们今天文章的主角DNN-HMM[1],同时DNN-HMM模型也是第一个被宣称达到人类同级别语音识别水平的模型[8]。接下来我们就要展开介绍HMM类模型:GMM-HMM系统和DNN-HMM混合系统。
4.方法 | Method
前文提到,语音识别的任务可以简化为概率问题——在给定时,给出
,使得:
,
由于不好直接求得以进行比较,但在HMM系统中,我们可以对人说话的发音方式建模(这部分在后文会详细介绍),进而容易得到的是
。故我们引入贝叶斯公式将上式反转,即作以下变型:
,
其中由于去掉分母不影响分式的大小比较,上式又等价于求:
。
这其中,我们称为声学模型(Acoustic Model),称
为语言模型(Language Model)。(对,就是Chat GPT一类的语言模型)
这样,我们就将不容易估计的概率转变成容易估计的概率。接下来我们简要解释声学模型和语言模型的含义,以及为什么说他们容易估计。
4.1.声学模型与语言模型
首先是声学模型,按字面意思理解,它就是给定文字内容
,其对应发音结果为音频
的概率。这个过程是一个正向的过程,是较好估计的。举一个不那么恰当的例子,如在中文里,文字“朝阳”对应的发声结果中,发出类似于“cháo yáng”或者“zhāo yáng”的概率是比较大的,但发出任何其它的声音的概率都是比较小的。笔者认为,这也是该概率被称为“声学模型”的原因,因为它描述的是“念”某一文字发出某一声音的概率,即某文字的“发声概率”。
以上的例子只是为了简要说明“声学模型”的内涵而并不具有严谨性,对于某一文字内容对应应该发出什么声音,应考虑更全面更深入的因素,而通过拼音的方式进行描述是抽象而模糊的。事实上,HMM正是声学模型,其提出者将文字的发音过程简化作一个隐马尔可夫模型。这部分内容我们会在后文详细介绍,在此不多赘述。
至于语言模型,则是用于描述某一文字
出现的概率,也代表其出现的合理性。如在英文里的经典例子,“识别语音”的英文“recognize speech”和“毁坏一个好沙滩”的英文“wreck a nice beach”的发音是一模一样的。但是,由于后者的词语搭配缺乏合理性(也可理解为在大量的各类文字材料中后者出现的频率小得多),其概率
也小得多,故在二者的声学模型取值相同(因为发音完全一样)的情况下,“recognize speech”是具有更高可能的识别结果。在实践中,我们会统计各词语在各种语境(上下文环境)中出现的频率,作为语言模型使用。时常,这样的统计还不足够令人满意,我们也会从逻辑的角度出发对目标材料进行合理扩展。另外,作为评判文字出现合理性的语言模型,成果缔造了Chat GPT这类能生成很多“合理”对话的聊天机器人。由于语言模型不是行文的重点,我们推荐有兴趣的读者查阅语言模型的其它相关材料,不再拓展阐述。
值得一提的是,即便是对于LAS之类的端到端模型,也即没有使用贝叶斯公式变换出这一式子,而是直接求解原问题
的模型,也会引入语言模型
,即LAS等模型在实际上会求解
。尽管这一表达式缺乏逻辑,但在实践中却能起到可观的效果,其原因可能在于这些模型本身不能很好地估计
,因而来自语言模型的修正可以生效[1]。
回到语音识别的问题上来,我们的目标是找到使得声学模型和语言模型
相乘最大的
。换一个角度理解:语言模型可以基于声学模型所生成的词组的合理性对语音识别结果进行重打分(rescoring),以帮助改进识别质量。
4.2.声学模型的构建:GMM-HMM系统
前文已经提到,在搭建声学模型的过程中,我们引入了HMM模型,其原因在于可以将发声的过程看作是是隐马尔可夫过程。但是在深入分析HMM相关内容之前,为了叙述逻辑的通畅,我们还是先从
这一式子讲起。
当我们想进一步探讨这一式子时,第一个难题立马扑面而来:文本先不提,这个音频也太复杂了点。须知,在概率论里面,我们最喜欢的就是(1)意义明确的、(2)情况可能有限且尽量少的问题(如明天是否下雨这个问题就很好估计,因为情况少而且每种情况有明确的意义)。
但是作为音频的语音信号,即便是在进行数字采样(在这里,我们假定读者已经了解音频数字采样的知识)后,每分钟的语音也至少有:
(1信道) x (8,000赫兹采样率) x (2 ^ 16种信号强度)= 524,288,000 种可能情况
再加上音频的每一个数值只是代表信号在那个时间点的强度(振幅),没有什么实际的参考意义,因为不能直接和文字信息对应上。
综上,我们需要一种降维+特征提取的手段,这就是音频分帧和特征提取。
4.2.1.预处理语音:音频分帧与特征提取
特征提取的目的是降维和赋予数据意义,而分帧则是特征提取的前提。音频分帧就是将音频切片,分为一小段一小段的内容,一个小段就是一帧(frame)。分好后再对每一帧分别进行特征提取。
在实践中,我们通常会每10ms取一个帧,一个帧的长度是25ms。当然这意味着相邻的帧之间会有重叠。

对于每个分好的帧,(对8k赫兹采样率来说)具有25ms x 8,000Hz=200个采样点,我们对这些采样点进行特征提取。需要提取什么特征呢?有一点很重要的启发就是:人对声音的音高是非常敏感的。因此,我们可以在音高上做文章,用傅里叶变换把每一帧中各个音高的能量表达出来。当然,这还不够,由于人耳在声音提取上是有偏好的,即对不同音高的灵敏度不同,于是人们依据经验设计了一种考虑这个因素的特征表示方法:梅尔倒频谱系数(MFCC)。
在这里,我们不介绍MFCC的具体提取流程,只说明其结果是:将每一帧的音频内容转换为一个39维的向量,这39位数字,代表了39个人耳非常敏感的频段上的强度。


于是,通过MFCC,我们就达到了降维(200+维至39维)和特征提取(39个人耳敏感频段强度)的效果。
4.2.2.预处理文本:音素、三音和状态
将语音信号简化后还不够,
TO-BE-CONTINUED
参考资料
[1] 国立台湾大学李宏毅 (Hung-yi Lee)教授DLHLP2020课程,原网址:Hung-yi Lee (ntu.edu.tw) ,B站搬运Speech Recognition (Option) - HMM_哔哩哔哩_bilibili
[2] AI大道理 - AI大语音(十三)——DNN-HMM (深度解析)-CSDN博客
[3] Stanford University EE365: Hidden Markov Models hmm.pdf (stanford.edu)
[4] W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016, pp. 4960-4964, doi: 10.1109/ICASSP.2016.7472621.
[5] Linhao Dong, Shuang Xu, and Bo Xu. "Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition."2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.
[6] Graves, Alex & Fernández, Santiago & Gomez, Faustino & Schmidhuber, Jürgen. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural 'networks. ICML 2006 - Proceedings of the 23rd International Conference on Machine Learning. 2006. 369-376. 10.1145/1143844.1143891.
[7] Graves, Alex. “Sequence Transduction with Recurrent Neural Networks.” 2012 ArXiv abs/1211.3711
[8] W. Xiong et al., "Toward Human Parity in Conversational Speech Recognition," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 12, pp. 2410-2423, Dec. 2017, doi: 10.1109/TASLP.2017.2756440.
[9] Ele实验室 - 【语音识别技术】重度鉴赏
相关文章:

【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理
摘要 | Abstract 这是一篇对语音识别中的一种热门技术——DNN-HMM混合系统原理的透彻介绍。本文自2月10日开始撰写,计划一星期内写完。 1.前言 | Introduction 近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型&#…...

thinkphp+vue企业产品展示网站f7enu
本文首先介绍了企业产品展示网站管理技术的发展背景与发展现状,然后遵循软件常规开发流程,首先针对系统选取适用的语言和开发平台,根据需求分析制定模块并设计数据库结构,再根据系统总体功能模块的设计绘制系统的功能模块图&#…...

在Ubuntu22.04上部署ComfyUI
ComfyUI 是 一个基于节点流程的 Stable Diffusion 操作界面,可以通过流程,实现了更加精准的工作流定制和完善的可复现性。每一个模块都有特定的的功能,我们可以通过调整模块连接达到不同的出图效果,特点如下: 1.对显存…...

Springboot+vue的社区养老服务平台(有报告)。Javaee项目,springboot vue前后端分离项目
演示视频: Springbootvue的社区养老服务平台(有报告)。Javaee项目,springboot vue前后端分离项目 项目介绍: 本文设计了一个基于Springbootvue的前后端分离的社区养老服务平台,采用M(model&…...

计算机设计大赛 深度学习+opencv+python实现车道线检测 - 自动驾驶
文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &am…...

机器学习2---逻辑回归(基础准备)
逻辑回归是基于线性回归是直线分的也可以做多分类 ## 数学基础 import numpy as np np.pi # 三角函数 np.sin() np.cos() np.tan() # 指数 y3**x # 对数 np.log10(10) np.log2(2) np.e np.log(np.e) #ln(e)# 对数运算 # log(AB) log(A) logB np.log(3*4)np.log(3)np.log(4) #…...
JVM体系
JVM是一种虚拟的计算机,它模拟了一个完整的硬件系统,并运行在一个完全隔离的环境中。这意味着JVM可以看作是一个在操作系统之上的计算机系统,与VMware、Virtual Box等虚拟机类似。JVM的设计目标是提供一个安全、可靠、高效且跨平台的运行环境…...

.NET命令行(CLI)常用命令
本文用于记录了.NET软件开发全生命周期各阶段常用的一些CLI命令,用于开发速查。 .NET命令行(CLI)常用命令 项目创建(1)查看本机SDK(2)查看本机可以使用的.NET版本(3)生成…...

六、Redis之数据持久化及高频面试题
6.1 数据持久化 官网文档地址:https://redis.io/docs/manual/persistence/ Redis提供了主要提供了 2 种不同形式的持久化方式: RDB(Redis数据库):RDB 持久性以指定的时间间隔执行数据集的时间点快照。AOF࿰…...

爬虫——ajax和selenuim总结
为什么要写这个博客呢,这个代码前面其实都有,就是结束了。明天搞个qq登录,这个就结束了。 当然也会更新小说爬取,和百度翻译,百度小姐姐的爬取,的对比爬取。总结嘛!!!加…...
【Python】单元测试unittest框架
note 使用unittest框架进行单元测试是Python标准库的一部分,提供了编写测试用例、测试套件以及运行测试的能力。测试用例是继承自unittest.TestCase的类。在这个类中,你可以定义一系列的方法来测试不同的行为。每个测试方法都应该以test开头。 文章目录…...

(三十七)大数据实战——Solr服务的部署安装
前言 Solr是一个基于Apache Lucene的开源搜索平台,它提供了强大的全文搜索、分布式搜索和数据分析功能。Solr 可以用于构建高性能的搜索应用程序,支持从海量数据中快速检索和分析信息。Solr 使用倒排索引和先进的搜索算法,可实现快速而准确的…...

在Ubuntu22.04上部署FoooCUS2.1
Fooocus 是一款基于 Gradio的图像生成软件,Fooocus 是对 Stable Diffusion 和 Midjourney 设计的重新思考: 1、从 Stable Diffusion 学习,该软件是离线的、开源的和免费的。 2、从 Midjourney 中学到,不需要手动调整,…...

详解C语言中的野指针和assert断言
目录 1.野指针1.1 野指针成因1.1.1 指针未初始化1.1.2 指针越界访问1.1.3 指针指向的空间释放 1.2 如何规避野指针1.2.1 指针初始化1.2.2 小心指针越界1.2.3 指针变量不再使用时,及时置为NULL,指针使用之前检查1.2.4 避免返回局部变量的地址 2.assert断言…...
Vue源码系列讲解——模板编译篇【四】(文本解析器)
1. 前言 在上篇文章中我们说了,当HTML解析器解析到文本内容时会调用4个钩子函数中的chars函数来创建文本型的AST节点,并且也说了在chars函数中会根据文本内容是否包含变量再细分为创建含有变量的AST节点和不包含变量的AST节点,如下ÿ…...

微信小程序开发学习笔记《17》uni-app框架-tabBar
微信小程序开发学习笔记《17》uni-app框架-tabBar 博主正在学习微信小程序开发,希望记录自己学习过程同时与广大网友共同学习讨论。建议仔细阅读uni-app对应官方文档 一、创建tabBar分支 运行如下的命令,基于master分支在本地创建tabBar子分支&#x…...

《区块链公链数据分析简易速速上手小册》第5章:高级数据分析技术(2024 最新版)
文章目录 5.1 跨链交易分析5.1.1 基础知识5.1.2 重点案例:分析以太坊到 BSC 的跨链交易理论步骤和工具准备Python 代码示例构思步骤1: 设置环境和获取合约信息步骤2: 分析以太坊上的锁定交易步骤3: 跟踪BSC上的铸币交易 结论 5.1.3 拓展案例 1:使用 Pyth…...

【芯片设计- RTL 数字逻辑设计入门 15 -- 函数实现数据大小端转换】
文章目录 函数实现数据大小端转换函数语法函数使用的规则Verilog and Testbench综合图VCS 仿真波形 函数实现数据大小端转换 在数字芯片设计中,经常把实现特定功能的模块编写成函数,在需要的时候再在主模块中调用,以提高代码的复用性和提高设…...

Codeforces Round 925 (Div. 3) D. Divisible Pairs (Java)
Codeforces Round 925 (Div. 3) D. Divisible Pairs (Java) 比赛链接:Codeforces Round 925 (Div. 3) D题传送门:D.Divisible Pairs 题目:D.Divisible Pairs 题目描述 输出格式 For each test case, output a single integer — the num…...

【C语言】实现单链表
目录 (一)头文件 (二)功能实现 (1)打印单链表 (2)头插与头删 (3)尾插与尾删 (4) 删除指定位置节点 和 删除指定位置之后的节点 …...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...