量子算法入门——2.线性代数与复数
参考资料:
【【零基础入门量子计算-第03讲】线性代数初步与复数】
来自b站up:溴锑锑跃迁
建议关注他的更多高质量文章:CSDN:【溴锑锑跃迁】
0. 前言
强烈建议搭配b站原视频进行观看,这只是我当时看的笔记,读懂这堂课的内容可能需要:线性代数(初等变换、列向量)、离散数学(群)、高等数学(极限等价无穷小部分)的知识储备
1. 向量的表示与运算
-
平面向量基本定理,可推广至三维或更多维度情况

-
内积=点乘,得到标量






-
正交基——内积为零的两向量相互垂直,称为正交基底



2. 矩阵表示及其运算


-
矩阵运算法则


-
矩阵初等变换

-
逆矩阵(up的视频里面这里要是有如下文字提示可能会更好)
设有矩阵 A A A和矩阵 B B B,有 A B = E AB=E AB=E(其中 E E E表示为单位矩阵,有的地方会用 I I I表示),则B为A的逆矩阵,即有 B = A − 1 B=A^{-1} B=A−1

对之前鸡兔同笼所列矩阵求解过程进行详细展示,关键是求逆矩阵左乘到右侧



矩阵等式的理解方式


- 理解方式一:(上图左)映射、矩阵变换,即从一个向量向另一个向量变换=矩阵
- 理解方式二:(上图右)用坐标系本身代表的基底去组合成新的向量


旋转矩阵:





3. 群的简介(离散数学相关)
1. 群的定义
-
考虑一个集合G并对其中元素定义/指定一种操作称为群乘法
-
集合G在指定群乘法后其中元素应当满足以下四条性质才能被称作群
-
封闭性

-
结合律

-
单位元

-
逆元素

日是e的象形


下面上三个实例



同态映射:先作用再乘法=先乘法再作用

即: e x ∗ e y = e x + y e^x*e^y=e^{x+y} ex∗ey=ex+y,即 f ( x ) + f ( y ) = f ( x + y ) f(x)+f(y)=f(x+y) f(x)+f(y)=f(x+y) -


4. 复数简介



i轴和1轴的0处是同一个0,将他们连接起来构成一个平面!!!




平面上表示

棣莫弗定理


此处请联想到上述的同态映射,即: e x ∗ e y = e x + y e^x*e^y=e^{x+y} ex∗ey=ex+y,即 f ( x ) + f ( y ) = f ( x + y ) f(x)+f(y)=f(x+y) f(x)+f(y)=f(x+y),下面是通过python对猜想进行证实

作图

即:
lim n → ∞ ( 1 + 1 n ) n = e \begin{aligned}\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n&=e\end{aligned} n→∞lim(1+n1)n=e
lim n → ∞ ( 1 + a n ) n = [ lim n → ∞ ( 1 + a n ) n a ] a ⟶ t = n a [ lim t → ∞ ( 1 + 1 t ) t ] a = e a \lim_{n\to\infty}\left(1+\frac{\color{red}{a}}n\right)^n=\left[\lim_{n\to\infty}\left(1+\frac{\color{red}{a}}n\right)^{\color{red}{\frac{n}{a}}}\right]^a\overset{t=\frac na}{\operatorname*{\longrightarrow}}\left[\lim_{t\to\infty}\left(1+\frac1t\right)^t\right]^a=e^{\color{red}{a}} n→∞lim(1+na)n=[n→∞lim(1+na)an]a⟶t=an[t→∞lim(1+t1)t]a=ea
将a换成x,x也看作常数:
lim n → ∞ ( 1 + x n ) n = e x \lim_{n\to\infty}\left(1+\frac xn\right)^n=e^x n→∞lim(1+nx)n=ex


使用幂函数调整比例,从而张成新的函数
(看到这里我真的绷不住了,这个样子叫做零基础。。。还好我刚考过研,还记得些哈哈哈)


欧拉公式:
e i x = c o s x + i s i n x e^{ix}=cosx+isinx eix=cosx+isinx
从而有
z = r ( cos θ + i s i n θ ) = r e i θ z=r(\cos\theta+isin\theta)=re^{i\theta} z=r(cosθ+isinθ)=reiθ





e L θ ν ⃗ ⇔ e^{L\theta}\vec{\nu}\Leftrightarrow eLθν⇔将 v ⃗ \vec{v} v逆时针转动角度 θ \theta θ
e i θ e^{i\theta} eiθ z ⇔ z\Leftrightarrow z⇔将 z z z逆时针转动角度 θ \theta θ

相关文章:
量子算法入门——2.线性代数与复数
参考资料: 【【零基础入门量子计算-第03讲】线性代数初步与复数】 来自b站up:溴锑锑跃迁 建议关注他的更多高质量文章:CSDN:【溴锑锑跃迁】 0. 前言 强烈建议搭配b站原视频进行观看,这只是我当时看的笔记,…...
分别通过select、多进程、多线程实现一个并发服务器
多进程 #include<myhead.h>#define PORT 8888 //端口号 #define IP "192.168.114.74" //IP地址//定义函数处理客户端信息 int deal_cli_msg(int newfd, struct sockaddr_in cin) {//5、收发数据使用newfd完成通信char buf[128] "&qu…...
如何在 emacs 上开始使用 Tree-Sitter (archlinux)
文章目录 如何在emacs上开始使用Tree-Sitter(archlinux) 如何在emacs上开始使用Tree-Sitter(archlinux) 在archlinux上使用比windows上不知道要方便多少倍! $ sudo pacman -S emacs $ sudo pacman -S tree-sitter这里…...
FL Studio2024最新中文版有哪些其新功能特点?
除了之前提到的特点外,FL Studio 21还有以下一些值得注意的特点: 高效的音频处理:FL Studio 21具备高效的音频处理能力,能够实时处理多轨道音频,提供低延迟的音频播放和录制,确保音乐制作过程中的流畅性和实…...
Oracle的学习心得和知识总结(三十二)|Oracle数据库数据库回放功能之论文四翻译及学习
目录结构 注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下: 1、参考书籍:《Oracle Database SQL Language Reference》 2、参考书籍:《PostgreSQL中文手册》 3、EDB Postgres Advanced Server User Gui…...
系统架构27 - 软件架构设计(6)
基于架构的软件开发方法 基于架构的软件开发方法(ABSD)概述概念与术语开发模型体系结构需求体系结构设计体系结构文档化体系结构复审体系结构实现体系结构的演化 基于架构的软件开发方法(ABSD) 基于体系结构的软件设计 (Architec…...
STM32 cubemx配置DMA+空闲中断接收不定长数据
文章目录 前言一、串口空闲中断二、DMA空闲中断接收不定长数据实现思路三、STM32Cubemx配置DMA空闲中断接收不定长数据四、代码编写总结 前言 本篇文章给大家讲解一下DMA串口空闲中断接收串口不定长数据,之前我们也是讲解过串口接收不定长数据的,那么本…...
Pycharm配置运行selenium教程
一、下载chrome浏览器和同版本的chromedriver chrome测试版版本120.0.6099.109 链接:https://pan.baidu.com/s/1pvFqL0WN8OkqPmURAs83kg?pwdvtsh 提取码:vtsh chromedriver版本120.0.6099.109 链接:https://pan.baidu.com/s/16fWWkrlD5C3J…...
银河麒麟V10开机后黑屏解决方法
情况描述: 单位的国产化电脑采用银河麒麟V10系统,在使用了近两个月时间后,开机到加载桌面那一步无法加载图形化桌面。 原理讲解 Linux本是纯命令行形式的系统,银河麒麟基于Linux中的Ubuntu LTS内核开发,其图形化的品牌…...
【Git版本控制 02】分支管理
目录 一、创建分支 二、切换分支 三、合并分支 四、删除分支 五、合并冲突 六、分支策略 七、bug分支 一、创建分支 # 当前仓库只有 master 一个主分支 # 可通过 git branch 是进行分支管理的命令,可通过不同参数对分支进行查看、创建、删除(base) [rootloc…...
基金分类
一、按基金运作方式分类 (一)封闭式基金 是基金份额总额在期限内固定不变,在期限内不可申购和赎回。 (二)开放式基金 是基金份额总额不固定,在期限内可以申购和赎回。 这里的开放式基金特指传统的开放式基…...
kali系统概述、nmap扫描应用、john破解密码、抓包概述、以太网帧结构、抓包应用、wireshark应用、nginx安全加固、Linux系统加固
目录 kali nmap扫描 使用john破解密码 抓包 封装与解封装 网络层数据包结构 TCP头部结构编辑 UDP头部结构 实施抓包 安全加固 nginx安全 防止缓冲区溢出 Linux加固 kali 实际上它就是一个预安装了很多安全工具的Debian Linux [rootmyhost ~]# kali resetkali …...
Spring Cloud 路由和消息传递 (HTTP 路由)
Spring Cloud 路由 Spring Cloud 路由是指将请求路由到特定服务的机制。Spring Cloud 提供了多种路由机制,包括: Ribbon: 一个基于 HTTP 和 TCP 的客户端负载均衡工具,提供软负载均衡、故障转移等功能。Feign: 一个声明式的 HTTP 客户端&am…...
【PyQt】12-滑块、计数控件
文章目录 前言一、滑块控件 QSlider运行结果 二、计数器控件 QSpinBox运行结果 总结 前言 1、滑块控件 2、计数控件 一、滑块控件 QSlider #Author :susocool #Creattime:2024/2/15 #FileName:28-滑块控件 #Description: 通过滑块选择字体大小 import sys from PyQ…...
【牛客面试必刷TOP101】Day21.BM11 链表相加(二)和BM12 单链表的排序
作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:牛客面试必刷TOP101 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!!&…...
疑似针对安全研究人员的窃密与勒索
前言 笔者在某国外开源样本沙箱平台闲逛的时候,发现了一个有趣的样本,该样本伪装成安全研究人员经常使用的某个渗透测试工具的破解版压缩包,对安全研究人员进行窃密与勒索双重攻击,这种双重攻击的方式也是勒索病毒黑客组织常用的…...
Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
摘要 在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存…...
2024/2/14
1.1、若有下面的变量定义,以下语句中合法的是( A )。 int i,a[10],*p; A) pa2; B) pa[5]; C) pa[2]2; D) p&(i2); 1.2、有以下程序 …...
跟廖雪峰老师学习Git(持续更新)
Git简介 创建版本库 第一步,创建一个新目录 第二步,通过git init变成Git可以管理的仓库 把文件添加到文本库,不要使用Windows自带的记事本! 我用的是VS code 创建readme.txt 放入库中 commit可以一次提交很多文件࿰…...
2024,欢迎来到性价比时代
「不是XX买不起,而是YY更有性价比。」——翻开过去一年的商业消费史,这句话几乎可以贯穿始终。年轻消费者们追求性价比的眼光一旦定型,一些品牌过去被品质生活、消费升级包装出来的华丽外壳,很容易一击就碎。 胜出的「性价比之王…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
