当前位置: 首页 > news >正文

C语言——oj刷题——模拟实现库函数strlen

目录

方法一:迭代法

方法二:递归法

方法三:指针算术法

方法四:汇编指令法


当我们使用C语言进行字符串操作时,经常会用到库函数strlen来获取字符串的长度。strlen函数的作用是计算一个以null字符结尾的字符串的长度。在本篇博客中,我将详细介绍如何模拟实现strlen函数的几种方法。


方法一:迭代法

迭代法是最简单和直观的方法,它通过遍历字符串中的字符,直到遇到null字符为止,然后返回遍历的字符数作为字符串的长度。

size_t strlen_iterative(const char* str) {size_t len = 0;while (*str != '\0') {len++;str++;}return len;
}

方法二:递归法

递归法是一种更为复杂的方法,它通过递归调用自身来计算字符串的长度。递归的终止条件是遇到null字符,返回0,否则返回递归调用加1。

size_t strlen_recursive(const char* str) {if (*str == '\0') {return 0;}return strlen_recursive(str + 1) + 1;
}

方法三:指针算术法

指针算术法是一种更为高效的方法,它利用指针的算术运算来计算字符串的长度。该方法使用两个指针,一个指向字符串的起始位置,另一个指向字符串的结束位置,然后通过两个指针相减得到长度。

size_t strlen_pointer_arithmetic(const char* str) {const char* end = str;while (*end != '\0') {end++;}return (size_t)(end - str);
}

方法四:汇编指令法

汇编指令法是一种最底层的方法,它直接使用汇编指令来计算字符串的长度。这种方法需要了解汇编语言的基础知识,并且在不同的平台上可能会有所不同。

size_t strlen_assembly(const char* str) {size_t len;__asm__("xor %0, %0\n""1:\n""cmpb $0, (%1)\n""je 2f\n""inc %0\n""inc %1\n""jmp 1b\n""2:\n": "=r"(len): "r"(str): "cc", "memory");return len;
}
这些方法都可以模拟实现strlen函数,你可以根据自己的需求选择其中之一。希望这篇博客对你理解字符串长度的计算过程有所帮助。如果你对其中的任何方法有疑问,或者需要更多的解释和示例,请随时告诉我。

相关文章:

C语言——oj刷题——模拟实现库函数strlen

目录 方法一:迭代法 方法二:递归法 方法三:指针算术法 方法四:汇编指令法 当我们使用C语言进行字符串操作时,经常会用到库函数strlen来获取字符串的长度。strlen函数的作用是计算一个以null字符结尾的字符串的长度…...

对进程与线程的理解

目录 1、进程/任务(Process/Task) 2、进程控制块抽象(PCB Process Control Block) 2.1、PCB重要属性 2.2、PCB中支持进程调度的一些属性 3、 内存分配 —— 内存管理(Memory Manage) 4、线程(Thread)…...

「数据结构」线性表

定义和基本操作 定义:相同数据类型的 n ( n ≥ 0 ) n(n \ge 0) n(n≥0)个数据元素的有限序列,其中n为表长,当n0时线性表是一个空表一般表示: L ( a 1 , a 2 , … … , a i , a i 1 , a n ) L(a_1,a_2,……,a_i,a_{i1},a_n) L(a…...

GEE:关于在GEE平台上进行回归计算的若干问题

作者:CSDN _养乐多_ 记录一些在Google Earth Engine (GEE)平台上进行机器学习回归计算的问题和解释。 文章目录 一、回归1.1 问:GEE平台上可以进行哪些机器学习回归算法?1.2 问:为什么只有这四种&#xf…...

Vivado -RAM

ip_ram 定义了一个名为ip_ram的模块,该模块具有以下端口: sys_clk:系统时钟输入。 sys_rst_n:系统复位输入。 module ip_ram( input sys_clk, input sys_rst_n);wire ram_en ; wire ram_wea …...

备战蓝桥杯---图论之最短路dijkstra算法

目录 先分个类吧: 1.对于有向无环图,我们直接拓扑排序,和AOE网类似,把取max改成min即可。 2.边权全部相等,直接BFS即可 3.单源点最短路 从一个点出发,到达其他顶点的最短路长度。 Dijkstra算法&#x…...

C#系列-C#实现秒杀功能(14)

在C#中实现商品秒杀功能,通常需要考虑并发控制、数据库事务、缓存策略、限流措施等多个方面。下面是一个简单的示例,演示了如何使用C#和数据库来实现一个基本的商品秒杀功能。 首先,假设你有一个商品表(Product)和一个…...

Java ‘Elasticsearch‘ 操作

依赖 <!-- https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-data-elasticsearch --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</ar…...

【AI视野·今日NLP 自然语言处理论文速览 第七十八期】Wed, 17 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Wed, 17 Jan 2024 (showing first 100 of 163 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Deductive Closure Training of Language Models for Coherence, Accur…...

实验5-4 使用函数计算两点间的距离

本题要求实现一个函数&#xff0c;对给定平面任意两点坐标(x1​,y1​)和(x2​,y2​)&#xff0c;求这两点之间的距离。 函数接口定义&#xff1a; double dist( double x1, double y1, double x2, double y2 );其中用户传入的参数为平面上两个点的坐标(x1, y1)和(x2, y2)&…...

【JavaEE】_JavaScript(Web API)

目录 1. DOM 1.1 DOM基本概念 1.2 DOM树 2. 选中页面元素 2.1 querySelector 2.2 querySelectorAll 3. 事件 3.1 基本概念 3.2 事件的三要素 3.3 示例 4.操作元素 4.1 获取/修改元素内容 4.2 获取/修改元素属性 4.3 获取/修改表单元素属性 4.3.1 value&#xf…...

ARM交叉编译搭建SSH

首先搭建好arm-linux交叉编译环境&#xff0c;开发板和主机可以ping通。 一、下载需要的源码 下载zlib: zlib-1.2.3.tar.gz 下载ssl: openssl-0.9.8d.tar.gz 下载ssh: openssh-4.6p1.tar.gz 二、交叉编译 新建目录/home/leo/ssh&#xff0c;并且将三个源码复制到该目录下。…...

###51单片机学习(2)-----如何通过C语言运用延时函数设计LED流水灯

前言&#xff1a;感谢您的关注哦&#xff0c;我会持续更新编程相关知识&#xff0c;愿您在这里有所收获。如果有任何问题&#xff0c;欢迎沟通交流&#xff01;期待与您在学习编程的道路上共同进步。 目录 一. 延时函数的生成 1.通过延时计算器得到延时函数 2.可赋值改变…...

回归预测模型:MATLAB多项式回归

1. 多项式回归模型的基本原理 多项式回归是线性回归的一种扩展&#xff0c;用于分析自变量 X X X与因变量 Y Y Y之间的非线性关系。与简单的线性回归模型不同&#xff0c;多项式回归模型通过引入自变量的高次项来增加模型的复杂度&#xff0c;从而能够拟合数据中的非线性模式。…...

「计算机网络」数据链路层

数据链路层的地位&#xff1a;网络中的主机、路由器等都必须实现数据链路层信道类型 点对点信道&#xff1a;使用一对一的点对点通信方式广播信道 使用一对多的广播通信方式必须使用专用的共享信道协议来协调这些主机的数据发送 使用点对点信道的数据链路层 数据链路和帧 链…...

【Linux】Ubuntu 22.04 升级 nodejs 到 v18

Ubuntu 22.04 已经安装的nodejs 版本 nodejs is already the newest version (12.22.9~dfsg-1ubuntu3.3). 删除以前的 nodejs 版本&#xff1a; 1. sudo apt remove nodejs rooterp:~# sudo apt remove nodejs Reading package lists... Done Building dependency tree..…...

当go get获取不到软件包时

当使用go get命令获取软件包时&#xff0c;如果无法成功获取&#xff0c;您可以尝试以下方法来解决问题&#xff1a; 检查网络连接&#xff1a;首先&#xff0c;确保您的计算机能够访问互联网&#xff0c;并且没有任何网络防火墙或代理设置阻止了go get命令的正常运行。 设置代…...

全网最详细解法|同济大学|高等数学|第八版|习题1-5

文章目录 全网最详细解法&#xff5c;同济大学&#xff5c;高等数学&#xff5c;第八版&#xff5c;习题1-5&#xff5c;5.1全网最详细解法&#xff5c;同济大学&#xff5c;高等数学&#xff5c;第八版&#xff5c;习题1-5&#xff5c;5.2 全网最详细解法&#xff5c;同济大学…...

可视化工具:将多种数据格式转化为交互式图形展示的利器

引言 在数据驱动的时代&#xff0c;数据的分析和理解对于决策过程至关重要。然而&#xff0c;不同的数据格式和结构使得数据的解读变得复杂和困难。为了解决这个问题&#xff0c;一种强大的可视化工具应运而生。这个工具具有将多种数据格式&#xff08;包括JSON、YAML、XML、C…...

[嵌入式AI从0开始到入土]14_orangepi_aipro小修补含yolov7多线程案例

[嵌入式AI从0开始到入土]嵌入式AI系列教程 注&#xff1a;等我摸完鱼再把链接补上 可以关注我的B站号工具人呵呵的个人空间&#xff0c;后期会考虑出视频教程&#xff0c;务必催更&#xff0c;以防我变身鸽王。 第1期 昇腾Altas 200 DK上手 第2期 下载昇腾案例并运行 第3期 官…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...