当前位置: 首页 > news >正文

二维差分---三维差分算法笔记

在这里插入图片描述

文章目录

  • 一.二维差分
    • 构造差分二维数组
    • 二维差分算法
    • 状态dp求b[i][j]数组的二维前缀和图解
  • 二.三维前缀和与差分
    • 三维前缀和图解:
    • 三维差分核心公式图解:
    • 模板题

一.二维差分

  • 给定一个原二维数组a[i][j],若要给a[i][j]中以(x1,y1)(x2,y2)为对角线的子矩阵中每个数都加上一个常数c,暴力的做法时间复杂度为O(N^2),使用二维差分可以在O(1)的时间复杂度内完成该操作
    在这里插入图片描述

构造差分二维数组

  • 构造差分二维数组b[i][j]使得原二维数组a[i][j]是二维数组b[i][j]的二维前缀和数组,即满足:
    在这里插入图片描述
    在这里插入图片描述

二维差分算法

  • 若使原数组a[i][j]中以(x1,y1)(x2,y2)为对角线的子矩阵中每个数都加上一个常数c,等价于对b[i][j]数组进行如下操作:
    • b[x1][y1] += c
    • b[x2+1][y2+1] += c
    • b[x2+1][y1] -= c
    • b[x1][y2+1] -= c
  • 核心操作接口:
//使原数组a[i][j]中以(x1,y1)和(x2,y2)为对角线的子矩阵中每个数都加上一个常数c
//接口可以用于构造差分矩阵以及进行原数组的矩阵元素整体修改操作
void Matrix_Add(long long(*b)[1010],int x1 ,int y1,int x2 ,int y2,int c){b[x1][y1] += c;b[x2+1][y2+1] += c;b[x1][y2+1] -= c;b[x2+1][y1] -= c;
}
//状态递推法对b[i][j]数组求二维前缀和,以获取原数组的元素--> 默认矩阵第0行第0列全部元素为0
void Get_Pre_Sum(long long(*b)[1010],int row , int col){//求(1,1)~(i,j)的子矩阵的和for(int i = 1 ; i <= row ; ++i){for(int j = 1 ; j<=col ; ++j){b[i][j] += (b[i-1][j] + b[i][j-1] - b[i-1][j-1]);}}
}
  • 求出b[i][j]数组的二维前缀和就可以恢复原数组a[i][j]

状态dp求b[i][j]数组的二维前缀和图解

在这里插入图片描述

二.三维前缀和与差分

三维前缀和图解:

在这里插入图片描述

  • 前缀和递推构造接口:
void Get_Pre_Sum(vector<vector<vector<long long>>>& Board,int high,int row,int col ){for(int i = 1 ; i <= high ; ++i){for(int j = 1 ;  j <= row ; ++j){for(int k = 1 ; k <= col ; ++k){Board[i][j][k] += Board[i-1][j][k] + Board[i][j-1][k] - Board[i-1][j-1][k] +Board[i][j][k-1] - Board[i-1][j][k-1] - Board[i][j-1][k-1] + Board[i-1][j-1][k-1];}}}
}

三维差分核心公式图解:

在这里插入图片描述

  • "相邻点"的加减满足容斥关系,相邻互斥,相间相容
  • 核心公式接口:
void Matrix_Add(vector<vector<vector<long long>>>& Board,int x1 , int y1 , int z1 , int x2 , int y2 , int z2 , int c){Board[x1][y1][z1] += c;Board[x1][y2+1][z1] -= c;Board[x2+1][y1][z1] -= c;Board[x2+1][y2+1][z1] += c;Board[x1][y1][z2+1] -= c;Board[x1][y2+1][z2+1] += c;Board[x2+1][y1][z2+1] += c;Board[x2+1][y2+1][z2+1] -= c;
}

模板题

差分模板题1
差分模板题2

在这里插入图片描述

相关文章:

二维差分---三维差分算法笔记

文章目录 一.二维差分构造差分二维数组二维差分算法状态dp求b[i][j]数组的二维前缀和图解 二.三维前缀和与差分三维前缀和图解:三维差分核心公式图解:模板题 一.二维差分 给定一个原二维数组a[i][j],若要给a[i][j]中以(x1,y1)和(x2,y2)为对角线的子矩阵中每个数都加上一个常数…...

D. Divisible Pairs

思路&#xff1a;我们预处理出每个数分别摸上xy的值&#xff0c;用map存一下&#xff0c;然后遍历每个数&#xff0c;如果a b是x的倍数的话&#xff0c;那么他们模x的值相加为x&#xff0c;如果a - b是y的倍数的话&#xff0c;那么他们的模y的值相等。 代码&#xff1a; voi…...

【教程】Kotlin语言学习笔记(二)——数据类型(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【Kotlin语言学习】系列文章 第一章 《认识Kotlin》 第二章 《数据类型》 文章目录 【Kotlin语言学习】系列文章一、基本数据…...

react 插槽

问题开发当中会经常出现组件十分相似的组件&#xff0c;只有一部分是不同的 解决&#xff1a; 父组件:在引用的时候 import { Component } from "react"; import Me from "../me";const name <div>名称</div> class Shoop extends Compone…...

Linux运用fork函数创建进程

fork函数&#xff1a; 函数原型&#xff1a; pid_t fork(void); 父进程调用fork函数创建一个子进程&#xff0c;子进程的用户区父进程的用户区完全一样&#xff0c;但是内核区不完全一样&#xff1b;如父进程的PID和子进程的PID不一样。 返回值&#xff1a; RETURN VALUEO…...

Pytest测试技巧之Fixture:模块化管理测试数据

在 Pytest 测试中&#xff0c;有效管理测试数据是提高测试质量和可维护性的关键。本文将深入探讨 Pytest 中的 Fixture&#xff0c;特别是如何利用 Fixture 实现测试数据的模块化管理&#xff0c;以提高测试用例的清晰度和可复用性。 什么是Fixture&#xff1f; 在 Pytest 中&a…...

设计模式-职责链模式Chain of Responsibility

职责链模式 一、原理和实现二、实现方式1) 使用链表实现2) 使用数组实现3) 扩展 作用&#xff1a;复用和扩展&#xff0c;在实际的项目开发中比较常用。在框架开发中&#xff0c;我们也可以利用它们来提供框架的扩展点&#xff0c;能够让框架的使用者在不修改框架源码的情况下&…...

书生浦语大模型实战营-课程作业(3)

下载sentence_transformer的代码运行情况。sentence_transformer用于embedding&#xff08;转向量&#xff09; 本地构建持久化向量数据库。就是把txt和md文件抽取出纯文本&#xff0c;分割成定长&#xff08;500&#xff09;后转换成向量&#xff0c;保存到本地&#xff0c;称…...

考研英语单词25

Day 25 bench n.长凳 elastic n.橡皮圈&#xff0c;松紧带 a.灵活的 “e-last 延伸出去” disaster n.灾难&#xff0c;灾祸【disastrous a.灾难性的&#xff0c;极坏的】 deadly a.致命的&#xff0c;极端的&#xff0c;势不两立的 hike n.徒步旅行&…...

计算机网络——08应用层原理

应用层原理 创建一个新的网络 编程 在不同的端系统上运行通过网络基础设施提供的服务&#xff0c;应用进程批次通信如Web Web服务器软件与浏览器软件通信 网络核心中没有应用层软件 网络核心没有应用层功能网络应用只能在端系统上存在 快速网络应用开发和部署 网络应用…...

面试计算机网络框架八股文十问十答第五期

面试计算机网络框架八股文十问十答第五期 作者&#xff1a;程序员小白条&#xff0c;个人博客 相信看了本文后&#xff0c;对你的面试是有一定帮助的&#xff01;关注专栏后就能收到持续更新&#xff01; ⭐点赞⭐收藏⭐不迷路&#xff01;⭐ 1&#xff09;与缓存相关的HTTP请…...

拟合案例1:matlab积分函数拟合详细步骤及源码

本文介绍一下基于matlab实现积分函数拟合的过程。采用的工具是lsqcurvefit和nlinfit两个函数工具。关于包含积分运算的函数,这里可以分为两大类啊。我们用具体的案例来展示:一种是积分运算中不包含这个自变量,如下图的第一个公式,也就是说它这个积分运算只有R和Q这两个待定…...

嵌入式软件设计入门:从零开始学习嵌入式软件设计

&#xff08;本文为简单介绍&#xff0c;个人观点仅供参考&#xff09; 首先,让我们了解一下嵌入式软件的定义。嵌入式软件是指运行在嵌入式系统中的特定用途软件,它通常被用来控制硬件设备、处理实时数据和实现特定功能。与桌面应用程序相比,嵌入式软件需要具备更高的实时性、…...

Educational Codeforces Round 135 (Rated for Div. 2)C. Digital Logarithm(思维)

文章目录 题目链接题意题解代码 题目链接 C. Digital Logarithm 题意 给两个长度位 n n n的数组 a a a、 b b b&#xff0c;一个操作 f f f 定义操作 f f f为&#xff0c; a [ i ] f ( a [ i ] ) a [ i ] a[i]f(a[i])a[i] a[i]f(a[i])a[i]的位数 求最少多少次操作可以使 …...

微信小程序介绍、账号申请、开发者工具目录结构详解及小程序配置

目录 一、微信小程序介绍 1.什么是小程序&#xff1f; 2.小程序可以干什么&#xff1f; 3.微信小程序特点 二、账号申请 1.账号注册 2.测试号申请 三、安装开发工具 四、开发小程序 五、目录结构 JSON 配置 小程序配置 app.json 工具配置 project.config.json 页…...

数字的魅力之情有独钟的素数

情有独钟的素数 什么是素数 素数&#xff08;Prime number&#xff09;也称为质数&#xff0c;是指在非0自然数中&#xff0c;除了1与其本身之外不拥有其他因数的自然数。也就是说&#xff0c;素数需要满足两个条件&#xff1a; 大于1的整数&#xff1b;只拥有1和其自身两个…...

Vue2源码梳理:render函数的实现

render 在 $mount 时&#xff0c;会调用 render 方法在写 template 时&#xff0c;最终也会转换成 render 方法Vue 的 _render 方法是实例的一个私有方法&#xff0c;它用来把实例渲染成一个虚拟 Node它的定义在 src/core/instance/render.js 文件中&#xff0c;它返回的是一个…...

flask+python企业产品订单管理系统938re

在设计中采用“自下而上”的思想&#xff0c;在创新型产品提前购模块实现了个人中心、个体管理、发布企业管理、投资企业管理、项目分类管理、产品项目管理、个体投资管理、企业投资管理、个体订单管理、企业订单管理、系统管理等的功能性进行操作。最终&#xff0c;对基本系统…...

Vue2源码梳理:关于数据驱动,与new Vue时的初始化操作

数据驱动 1 &#xff09;概述 vue的一个核心思想&#xff0c;就是数据驱动 所谓数据驱动&#xff0c;就是指视图是由数据驱动生成的 对视图的修改并不会直接操作dom&#xff0c;而是通过修改数据 它相比我们传统的前端开发&#xff0c;如使用 jQuery 的前端库直接去修改 dom…...

【C++航海王:追寻罗杰的编程之路】关于模板,你知道哪些?

目录 1 -> 泛型编程 2 -> 函数模板 2.1 -> 函数模板概念 2.2 -> 函数模板格式 2.3 -> 函数模板的原理 2.4 -> 函数模板的实例化 2.5 -> 函数参数的匹配原则 3 -> 类模板 3.1 -> 类模板的定义格式 3.2 -> 类模板的实例化 1 -> 泛型编…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...