当前位置: 首页 > news >正文

12 ABC串口接收原理与思路

1. 串口接收原理

基本原理:通过数据起始位判断要是否要开始接收的数据,通过采样的方式确定每一位数据是0还是1。

如何判断数据起始位到来:通过边沿检测电路检测起始信号的下降沿

如何采样:一位数据采多次,统计得到高电平出现的次数,次数多的就是该位的电平值

2. 自己写的代码(不完善)

设计代码

module uart_byte_rx(clk,rstn,uart_byte_rx,blaud_set,data,rx_done
);input clk;input rstn;input uart_byte_rx;input blaud_set;output reg [7:0] data;output reg rx_done;//Blaud_set = 0时,波特率 = 9600;//Blaud_set = 1时,波特率 = 19200;//Blaud_set = 2时,波特率 = 38400;//Blaud_set = 3时,波特率 = 57600;//Blaud_set = 4时,波特率 = 115200;reg[17:0] bps_dr;always@(*)case(blaud_set)0: bps_dr = 1000000000/9600/20;1: bps_dr = 1000000000/19200/20;2: bps_dr = 1000000000/38400/20;3: bps_dr = 1000000000/57600/20;4: bps_dr = 1000000000/115200/20;endcasereg [1:0] test;reg get_en;always@(posedge clk or negedge rstn) //边沿检测,使能后续的采样if(!rstn) begindata <= 0;test <= 0;get_en <= 0;rx_done <= 0;endelse begintest[0] <= uart_byte_rx;test[1] <= test[0];if((test[0] ==0 )&&(test[1] == 1))get_en <= 1;rx_done <= 0;endreg [17:0] div_cnt;reg [3:0] counter;reg [3:0] tx_counter;always@(posedge clk or negedge rstn) //计数时钟,一个计数周期代表一位数据if(!rstn) div_cnt <= 0;else if(get_en)beginif(div_cnt == 434 - 1)div_cnt <= 0;elsediv_cnt <= div_cnt + 1'd1;end        wire bps_clk;assign bps_clk = (div_cnt == 1);always@(posedge clk or negedge rstn) //数据段,包含起始位和终止位,共十段if(!rstn) tx_counter <= 0;else if(get_en)beginif(tx_counter == 11)tx_counter <= 0;else if(div_cnt == 1)tx_counter <= tx_counter + 1'd1;end       always@(posedge clk or negedge rstn) //数据采样,每段数据采样8次。if(!rstn)counter <= 0;else if(div_cnt == 3)counter <= 0;else if((div_cnt == 1*433/8 - 10)||(div_cnt == 2*433/8 - 10)||(div_cnt == 3*433/8 - 10)||(div_cnt == 4*433/8 - 10)||(div_cnt == 5*433/8 - 10)||(div_cnt == 6*433/8 - 10)||(div_cnt == 7*433/8 - 10)||(div_cnt == 8*433/8 - 10))counter <= counter + uart_byte_rx;always@(posedge clk or negedge rstn) //if(!rstn) counter <= 0;else if(div_cnt == 2)case(tx_counter)2:if(counter > 4 )data[0] <= 1; else if(counter <4) data[0] <= 0;3:if(counter > 4 )data[1] <= 1; else if(counter <4) data[1] <= 0; 4:if(counter > 4 )data[2] <= 1; else if(counter <4) data[2] <= 0; 5:if(counter > 4 )data[3] <= 1; else if(counter <4) data[3] <= 0; 6:if(counter > 4 )data[4] <= 1; else if(counter <4) data[4] <= 0; 7:if(counter > 4 )data[5] <= 1; else if(counter <4) data[5] <= 0; 8:if(counter > 4 )data[6] <= 1; else if(counter <4) data[6] <= 0; 9:if(counter > 4 )data[7] <= 1; else if(counter <4) data[7] <= 0;11:begin rx_done <= 1; get_en <= 0; div_cnt <= 0; enddefault: begin rx_done <= 0; data <= data; endendcase        
endmodule

仿真波形

3. 看完视频后写的代码(完善)

设计代码

3.1 需学习的点:

1.将div_cnt划分为最小时间段

2.某些判断信号直接用assign利用,而不需要利用寄存器

3.仿真代码中task的使用

module uart_byte_rx1(clk,rstn,blaud_set,uart_rx,data,rx_done
);input clk;input rstn;input [2:0]blaud_set;input uart_rx;output reg [7:0] data;output rx_done;reg [8:0] bps_dr;always@(*)case(blaud_set)0:bps_dr = 1000000000/9600/16/20;1:bps_dr = 1000000000/19200/16/20;2:bps_dr = 1000000000/38400/16/20;3:bps_dr = 1000000000/57600/16/20;4:bps_dr = 1000000000/115200/16/20;default : bps_dr = 1000000000/9600/16/20;endcase//边沿信号检测reg [1:0] uart_rx_r; //用两位寄存器分别存储两个时间沿的uart_rx信号always@(posedge clk) beginuart_rx_r[0] <= uart_rx;uart_rx_r[1] <= uart_rx_r[0];end//将两位寄存器的值直接通过导线输出进行判断(不需要再使用寄存器)wire nedge_uart_rx;  //掌握一下这个方法,之前一直使用的是寄存器//法一://assign nedge_uart_rx = ((uart_rx_r[0] == 0)&&(uart_rx_r == 1));//法二:assign nedge_uart_rx = (uart_rx_r == 2'b10);reg rx_en;always@(posedge clk or negedge rstn)if(!rstn)rx_en <= 0;else if(nedge_uart_rx)rx_en <= 1;else if(rx_done)rx_en <= 0;//周期计数器reg [8:0] div_cnt;always@(posedge clk or negedge rstn)if(!rstn)div_cnt <= 0;else if(rx_en) beginif(div_cnt == bps_dr - 1)div_cnt <= 0;elsediv_cnt <= div_cnt + 1'd1;endelsediv_cnt <= 0;wire [3:0]bps_clk_16x; //(一定要记得加位宽)采样信号,这种写法很灵活assign bps_clk_16x = bps_dr/2; //采样每一段的中点值,同时也可以用它来计数。//发送一字节的数据有需要十个数据位,每位数据有16个小段供采样,共160reg [7:0]bps_cnt;always@(posedge clk or negedge rstn)if(!rstn)bps_cnt <= 0;else if(rx_en) beginif(bps_cnt == 159)bps_cnt <= 0;else if(div_cnt ==bps_clk_16x)bps_cnt <= bps_cnt + 1'd1; endelse  bps_cnt <= 0;reg[2:0] r_data[7:0];//二维数据,代表八个r_data,每个r_data有3位寄存器存储数值。reg[2:0] sta_data;reg[2:0] sto_data;always@(posedge clk or negedge rstn)if(!rstn)beginsta_data <= 0;sto_data <= 0;r_data[0] <= 0; //语法规定,二维数组赋值要分开赋值r_data[1] <= 0;    r_data[2] <= 0;r_data[3] <= 0;    r_data[4] <= 0;  r_data[5] <= 0;    r_data[6] <= 0; r_data[7] <= 0;        endelse if(div_cnt == bps_clk_16x - 1)case(bps_cnt) //下面合在一起的写法是允许的0:beginr_data[0] <= 0; r_data[1] <= 0;    r_data[2] <= 0;r_data[3] <= 0;    r_data[4] <= 0;  r_data[5] <= 0;    r_data[6] <= 0; r_data[7] <= 0;end   5,6,7,8,9,10,11: sta_data <= sta_data + uart_rx;21,22,23,24,25,26,27: r_data[0] <= r_data[0] + uart_rx;37,38,39,40,41,42,43: r_data[1] <= r_data[1] + uart_rx;53,54,55,56,57,58,59: r_data[2] <= r_data[2] + uart_rx;69,70,71,72,73,74,75: r_data[3] <= r_data[3] + uart_rx;85,86,87,88,89,90,91: r_data[4] <= r_data[4] + uart_rx;101,102,103,104,105,106,107: r_data[5] <= r_data[5] + uart_rx;117,118,119,120,121,122,123: r_data[6] <= r_data[6] + uart_rx;133,134,135,136,137,138,139: r_data[7] <= r_data[7] + uart_rx;149,150,151,152,153,154,155: sto_data <= sto_data + uart_rx;default:;endcase        reg rx_done;always@(posedge clk or negedge rstn)if(!rstn)rx_done <= 0;else if(bps_cnt == 159) beginrx_done <= 1;endelserx_done <= 0;//数据接收完成后赋值给data输出always@(posedge clk or negedge rstn)if(!rstn)data <= 0;else if(rx_done)begindata[0] <= (r_data[0] >= 4 ) ? 1 : 0; //可换种写法,写法如下data[1] <= (r_data[1] >= 4 ) ? 1 : 0;data[2] <= (r_data[2] >= 4 ) ? 1 : 0;data[3] <= (r_data[3] >= 4 ) ? 1 : 0;data[4] <= (r_data[4] >= 4 ) ? 1 : 0;data[5] <= (r_data[5] >= 4 ) ? 1 : 0;data[6] <= (r_data[6] >= 4 ) ? 1 : 0;data[7] <= (r_data[7] >= 4 ) ? 1 : 0;end// data[1] <= r_data[1][2]// 0:3'd000// 1:3'd001// 2:3'd010// 4:3'd100// 5:3'd101// 6:3'd110// 7:3'd111 利用第3位的区别给data赋值endmodule

仿真代码

`timescale 1ns/1nsmodule uart_byte_rx1_tb();reg clk;reg rstn;reg uart_rx;wire [2:0]blaud_set;wire [7:0]data;wire rx_done;uart_byte_rx1 uart_byte_rx_inst1(.clk(clk),.rstn(rstn),.blaud_set(blaud_set),.uart_rx(uart_rx),.data(data),.rx_done(rx_done));assign blaud_set = 3'd4;initial clk = 1;always #10 clk = ~clk;initial beginrstn = 0;uart_rx = 1;#201;rstn = 1;#200;uart_tx_byte(8'h5a);@(posedge rx_done)#5000;uart_tx_byte(8'ha5);@(posedge rx_done)#5000;uart_tx_byte(8'h86);@(posedge rx_done)#5000;$stop;endtask uart_tx_byte;input [7:0] tx_data;beginuart_rx = 1;#20;uart_rx = 0;#8680;uart_rx = tx_data[0];#8680;uart_rx = tx_data[1];#8680;uart_rx = tx_data[2];#8680;uart_rx = tx_data[3];#8680;uart_rx = tx_data[4];#8680;uart_rx = tx_data[5];#8680;uart_rx = tx_data[6];#8680;uart_rx = tx_data[7];endendtaskendmodule

仿真波形

相关文章:

12 ABC串口接收原理与思路

1. 串口接收原理 基本原理&#xff1a;通过数据起始位判断要是否要开始接收的数据&#xff0c;通过采样的方式确定每一位数据是0还是1。 如何判断数据起始位到来&#xff1a;通过边沿检测电路检测起始信号的下降沿 如何采样&#xff1a;一位数据采多次&#xff0c;统计得到高…...

leetcode(二分查找)34.在排序数组中查找元素的第一个和最后一个位置(C++详细解释)DAY11

文章目录 1.题目示例提示 2.解答思路3.实现代码结果 4.总结 1.题目 给你一个按照非递减顺序排列的整数数组 nums&#xff0c;和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target&#xff0c;返回 [-1, -1]。 你必须设计…...

算法刷题框架

前言&#xff1a;最近积累了一些算法题量&#xff0c;正在刷东神的算法笔记&#xff0c;监督自己记录下读后启发&#xff0c;顺便帮助道友们阅读 数据结构 这一部分老生常谈&#xff0c;数据的存储方式只有顺序存储和链式存储。 最基本的数组和链表对应这两者&#xff0c;栈…...

跟着cherno手搓游戏引擎【24】开启2D引擎前的项目总结(包括前置知识汇总)

前置技术&#xff1a; c动态链接和静态链接&#xff1a; 隐藏的细节&#xff1a;编译与链接_哔哩哔哩_bilibili 【底层】动态链接库(dll)是如何工作的&#xff1f;_哔哩哔哩_bilibili 预编译&#xff0c;编译&#xff0c;汇编&#xff0c;链接 预编译头文件&#xff1a; 为…...

石子合并+环形石子合并+能量项链+凸多边形的划分——区间DP

一、石子合并 (经典例题) 设有 N 堆石子排成一排&#xff0c;其编号为 1,2,3,…,N。 每堆石子有一定的质量&#xff0c;可以用一个整数来描述&#xff0c;现在要将这 N 堆石子合并成为一堆。 每次只能合并相邻的两堆&#xff0c;合并的代价为这两堆石子的质量之和&#xff0c;…...

IMX6ULL移植U-Boot 2022.04

目录 目录 1.编译环境以及uboot版本 2.默认编译测试 3.uboot中新增自己的开发板 3.编译测试 4.烧录测试 5.patch文件 1.编译环境以及uboot版本 宿主机Debian12u-boot版本lf_v2022.04 ; git 连接GitHub - nxp-imx/uboot-imx: i.MX U-Boot交叉编译工具gcc-arm-10.3-2021.0…...

ES实战-高级聚合

多桶型聚合 1.词条聚合–terms 2.范围聚合–range 3,直方图聚合–histogram/日期直方图 4.嵌套聚合 5.地理距离聚合 include(包含)exclude(不包含) GET /get-together/_search?pretty {"size": 0,"aggs": {"tags": {"terms": {"…...

网络安全产品之认识蜜罐

文章目录 一、什么是蜜罐二、蜜罐的主要类型三、蜜罐的主要功能四、蜜罐的主要组成及核心技术五、蜜罐的优缺点六、蜜罐如何与其他安全工具协同工作&#xff1f;七、什么是“蜜网”&#xff1f;与蜜罐的联系和区别是什么&#xff1f; 蜜罐的概念首次由Clifford Stoll在其1988年…...

推荐《架构探险:从零开始写Java Web框架》

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 春节读了《架构探险&#xff1a;从零开始写Java Web框架》&#xff0c;一本大概10年前的好书。 本书的作者是阿里巴巴架构师黄勇。黄勇对分布式服务架构与大数据技术有深入…...

Go教程-Go语言简介

这篇文章我们来聊聊Go语言。 Go语言发展历史 以下是Go语言发展的几个里程碑节点&#xff1a; Go一开始是Google内部的一个项目&#xff0c;由三位大佬Rob Pike、Robert Griesemer、Ken Thompson早2007年发起。在2009年11月&#xff0c;Go语言正式对外开源。在2010年&#xf…...

React + SpringBoot + Minio实现文件的预览

思路&#xff1a;后端提供接口&#xff0c;从minio获取文件的预览链接&#xff0c;返回给前端&#xff0c;前端使用组件进行渲染展示 这里我从minio获取文件预览地址用到了一个最近刚开源的项目&#xff0c;挺好用的&#xff0c;大伙可以试试&#xff0c;用法也很简单 官网&am…...

心法利器[107] onnx和tensorRT的bert加速方案记录

心法利器 本栏目主要和大家一起讨论近期自己学习的心得和体会&#xff0c;与大家一起成长。具体介绍&#xff1a;仓颉专项&#xff1a;飞机大炮我都会&#xff0c;利器心法我还有。 2023年新一版的文章合集已经发布&#xff0c;获取方式看这里&#xff1a;又添十万字-CS的陋室2…...

AcWing 122 糖果传递(贪心)

[题目概述] 有 n 个小朋友坐成一圈&#xff0c;每人有 a[i] 个糖果。 每人只能给左右两人传递糖果。 每人每次传递一个糖果代价为 1。 求使所有人获得均等糖果的最小代价。 输入格式 第一行输入一个正整数 n&#xff0c;表示小朋友的个数。 接下来 n 行&#xff0c;每行一个…...

unity的重中之重:组件

检查器&#xff08;Hierarchy&#xff09;面板中的所有东西都是组件。日后多数工作都是和组件打交道&#xff0c;包括调参、自定义脚本组件。 文章目录 12 游戏的灵魂&#xff0c;脚本组件13 玩转脚本组件14 尽职的一生&#xff0c;了解组件的生命周期15 不能插队&#xff01;…...

Linux释放内存

free -m是Linux上查看内存的指令&#xff0c;其中-m是以兆&#xff08;MB&#xff09;为单位&#xff0c;如果不加则以KB为单位。 如下图表示&#xff0c;&#xff08;total&#xff09;总物理内存是809MB&#xff0c;&#xff08;used&#xff09;已使用167MB&#xff0c;&…...

Python算法题集_翻转二叉树

Python算法题集_翻转二叉树 题226&#xff1a;翻转二叉树1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【DFS递归】2) 改进版一【BFS迭代&#xff0c;节点循环】3) 改进版二【BFS迭代&#xff0c;列表循环】 4. 最优算法 本文为Python算法题集…...

Git快速掌握,通俗易懂

Git分布式版本控制工具 介绍 Git是一个开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或小或大的项目。Git是由Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源码的版本控制软件。Git可以帮助开发者们管理代码的版本&#xff0c;避免代码冲突&#…...

PHP毕业设计图片分享网站76t17

图片分享网站主要是为了提高工作人员的工作效率和更方便快捷的满足用户&#xff0c;更好存储所有数据信息及快速方便的检索功能&#xff0c;对系统的各个模块是通过许多今天的发达系统做出合理的分析来确定考虑用户的可操作性&#xff0c;遵循开发的系统优化的原则&#xff0c;…...

代码随想录 Leetcode45. 跳跃游戏 II

题目&#xff1a; 代码(首刷看解析 2024年2月15日&#xff09;&#xff1a; class Solution { public:int jump(vector<int>& nums) {if (nums.size() 1) return 0;int res 0;int curDistance 0;int nextDistance 0;for (int i 0; i < nums.size(); i) {nex…...

【C语言】socketpair 的系统调用

一、 Linux 内核 4.19socketpair 的系统调用 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,int __user *, usockvec) {return __sys_socketpair(family, type, protocol, usockvec); } 这段代码定义了一个名为 socketpair 的系统调用。系统调用是操作…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...