当前位置: 首页 > news >正文

线性代数笔记2--矩阵消元

0. 简介

矩阵消元

1. 消元过程

实例方程组
{ x + 2 y + z = 2 3 x + 8 y + z = 12 4 y + z = 2 \begin{cases} x+2y+z=2\\ 3x+8y+z=12\\ 4y+z=2 \end{cases} x+2y+z=23x+8y+z=124y+z=2
矩阵化
A = [ 1 2 1 3 8 1 0 4 1 ] X = [ x y z ] A= \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \\ X= \begin{bmatrix} x\\y\\z \end{bmatrix} A= 130284111 X= xyz
B = [ 2 12 2 ] B= \begin{bmatrix} 2\\12\\2 \end{bmatrix} B= 2122
消元

[ 1 2 1 3 8 1 0 4 1 ] ⟶ ( 2 , 1 ) [ 1 2 1 0 2 − 2 0 4 1 ] ⟶ ( 3 , 2 ) [ 1 2 1 0 2 − 2 0 0 5 ] \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \stackrel{(2,1)}{\longrightarrow} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \stackrel{(3,2)}\longrightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} 130284111 (2,1) 100224121 (3,2) 100220125
回代
[ 2 12 2 ] ⟶ r o w 2 − 3 r o w 1 [ 2 6 2 ] ⟶ r o w 3 − 2 r o w 2 [ 2 6 − 10 ] \begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix} \stackrel{row_2-3row_1}\longrightarrow \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} \stackrel{row_3-2row_2}\longrightarrow \begin{bmatrix} 2 \\ 6 \\-10 \end{bmatrix} 2122 row23row1 262 row32row2 2610
求解
[ 1 2 1 0 2 − 2 0 0 5 ] [ x y z ] = [ 2 6 − 10 ] \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\z \end{bmatrix} =\begin{bmatrix} 2 \\ 6 \\ -10 \end{bmatrix} 100220125 xyz = 2610
结果
[ x y z ] = [ 2 1 − 2 ] \begin{bmatrix} x \\y \\z \end{bmatrix}= \begin{bmatrix} 2\\1 \\ -2 \end{bmatrix} xyz = 212

2. 消元矩阵

将上述消元的过程变为矩阵相乘的形式。

向量式思考
矩阵乘列向量
[ . . . . . . . . . ] [ x y z ] = [ x ∗ c o l 1 + y ∗ c o l 2 + z ∗ c o l 3 ] \begin{bmatrix} . & . & .\\ . & . & .\\ . & . & . \end{bmatrix} \begin{bmatrix}\ x \\ y\\ z \end{bmatrix}= \begin{bmatrix} x*col1 +y*col2 +z*col3 \end{bmatrix} .........  xyz =[xcol1+ycol2+zcol3]
行向量乘矩阵
[ x y z ] [ . . . . . . . . . ] = [ x ∗ r o w 1 + y ∗ r o w 2 + z ∗ r o w 3 ] \begin{bmatrix}\ x \ y\ z \end{bmatrix} \begin{bmatrix} . & . & .\\ . & . & .\\ . & . & . \end{bmatrix}= \begin{bmatrix} x*row1 \\+\\y*row2 \\+\\z*row3 \end{bmatrix} [ x y z] ......... = xrow1+yrow2+zrow3
一个矩阵左边乘一个单位矩阵并不改变其值
A = [ 1 2 1 3 8 1 0 4 1 ] = [ 1 0 0 0 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] A= \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix} A= 130284111 = 100010001 130284111
而做行的加减则可以
A = [ 1 2 1 3 8 1 0 4 1 ] A ′ = [ 1 0 0 − 3 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] A= \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix}\\ A'= \begin{bmatrix} 1 & 0 &0\\ -3 & 1 & 0\\ 0 &0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 &1 \end{bmatrix}=\\ \begin{bmatrix} 1 & 2 &1 \\ 0 & 2 & -2\\ 0& 4 & 1 \end{bmatrix} A= 130284111 A= 130010001 130284111 = 100224121
实际上这个过程就是,我们在之前的消元过程中的第二行减去三倍第一行的过程。我们继续下去将这个矩阵对角化。
A ′ ′ = [ 1 0 0 0 1 0 0 − 2 1 ] A ′ = [ 1 0 0 0 1 0 0 − 2 1 ] [ 1 2 1 0 2 − 2 0 4 1 ] = [ 1 2 1 0 2 − 2 0 0 5 ] A''= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} A'\\= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix}\\= \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} A′′= 100012001 A= 100012001 100224121 = 100220125

我们令最后的上三角矩阵为
U = [ 1 2 1 0 2 − 2 0 0 5 ] U=\begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} U= 100220125
两个变换矩阵为
E 21 = [ 1 0 0 − 3 1 0 0 0 1 ] E 32 = [ 1 0 0 0 1 0 0 − 2 1 ] E_{21}=\begin{bmatrix} 1 & 0 &0\\ -3 & 1 & 0\\ 0 &0 & 1 \end{bmatrix} \\ E_{32}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} E21= 130010001 E32= 100012001
E 32 ( E 21 A ) = U E_{32}(E_{21}A)=U E32(E21A)=U
而矩阵乘法满足结合律证明即
E 32 E 21 A = E 32 ( E 21 A ) E_{32}E_{21}A=E_{32}(E_{21}A) E32E21A=E32(E21A)
所以最终消元的过程变成了寻找矩阵E的过程
E = E 32 E 21 E=E_{32}E_{21} E=E32E21
这一过程。

3. 置换矩阵

在上述的消元矩阵中,我们并没有进行列的交换。那么如何进行交换呢?

我们知道在原矩阵基础左边乘单位矩阵,矩阵不会发生变化。
A = [ 1 2 3 4 ] = [ 1 0 0 1 ] [ 1 2 3 4 ] A= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}=\ \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]= [1001][1324]

如何交换两行呢,将单位矩阵变形
A ′ = [ 0 1 1 0 ] [ 1 2 3 4 ] = [ 3 4 1 2 ] A'= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}= \begin{bmatrix} 3 & 4\\ 1 & 2 \end{bmatrix} A=[0110][1324]=[3142]
推广到多行
A = [ 1 2 3 4 5 6 7 8 9 ] A= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix} A= 147258369

  • 行变换
    交换第一行和第三行
    A ′ = [ 0 0 1 0 1 0 1 0 0 ] [ 1 2 3 4 5 6 7 8 9 ] A'= \begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} A= 001010100 147258369
    交换第一行和第二行
    A ′ ′ = [ 0 1 0 1 0 0 0 0 1 ] [ 1 2 3 4 5 6 7 8 9 ] A''= \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} A′′= 010100001 147258369

所以交换任意两行,只需将单位矩阵中对应行 1 1 1的位置进行交换。

  • 列变换

在矩阵左边乘是对原矩阵行变换,而在矩阵右边则是列变换
交换矩阵两列
A = [ 1 2 3 4 ] A ′ = [ 1 2 3 4 ] [ 0 1 1 0 ] = [ 2 1 4 3 ] A= \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \\ A'= \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}= \begin{bmatrix} 2 & 1\\ 4 & 3 \end{bmatrix} A=[1324]A=[1324][0110]=[2413]

交换多列也是一样的效果
交换第 1 1 1 2 2 2
A = [ 1 2 3 4 5 6 7 8 9 ] A ′ = [ 1 2 3 4 5 6 7 8 9 ] [ 0 1 0 1 0 0 0 0 1 ] = [ 2 1 3 5 4 6 8 7 9 ] A= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9\\ \end{bmatrix} \\ A'= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9\\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\\ \end{bmatrix}= \begin{bmatrix} 2 & 1 & 3\\ 5 & 4 & 6\\ 8 & 7 & 9\\ \end{bmatrix} A= 147258369 A= 147258369 010100001 = 258147369

所以交换任意两列,只需将单位矩阵中对应行 1 1 1的位置进行交换。
与行交换的不同地方在于,矩阵乘的在右边了。

4. 矩阵的逆

A = [ 1 0 0 − 3 1 0 0 0 1 ] A − 1 = [ 1 0 0 3 1 0 0 0 1 ] A − 1 A = [ 1 0 0 3 1 0 0 0 1 ] [ 1 0 0 − 3 1 0 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] A= \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 &0\\ 0 & 0 & 1 \end{bmatrix}\\ A^{-1}= \begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix}\\ A^{-1}A= \begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 &0\\ 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0\\ 0 & 0 & 1 \end{bmatrix} A= 130010001 A1= 130010001 A1A= 130010001 130010001 = 100010001

相关文章:

线性代数笔记2--矩阵消元

0. 简介 矩阵消元 1. 消元过程 实例方程组 { x 2 y z 2 3 x 8 y z 12 4 y z 2 \begin{cases} x2yz2\\ 3x8yz12\\ 4yz2 \end{cases} ⎩ ⎨ ⎧​x2yz23x8yz124yz2​ 矩阵化 A [ 1 2 1 3 8 1 0 4 1 ] X [ x y z ] A \begin{bmatrix} 1 & 2 & 1 \\ 3 & …...

透光力之珠——光耦固态继电器的独特特点解析

光耦固态继电器作为现代电子控制领域中的重要组件,以其独特的特点在工业、通信、医疗等多个领域得到广泛应用。本文将深入剖析光耦固态继电器的特点,揭示其在电子控制中的卓越性能。 光耦固态继电器的光电隔离技术 光耦固态继电器以其光电隔离技术而脱颖…...

C#系列-​​​​​​​EntityFrameworkCore.Transactions.Abstractions应用场景+实例(38)

EntityFrameworkCore.Transactions.Abstractions应用场景 EntityFrameworkCore.Transactions.Abstractions 并不是一个官方的或广泛认可的 NuGet 包名称。在 Entity Framework Core (EF Core) 中,事务管理通常是通过 DbContext 的内置方法来实现的,如 Sa…...

PMDG 737

在Simbrief中生成计划后下载两个文件 放到C:\Users\32497\AppData\Local\Packages\Microsoft.FlightSimulator_8wekyb3d8bbwe\LocalState\packages\pmdg-aircraft-737(微软商店版本) 加油 先在飞行计划中查看计划燃油数量 MCDU中, AIRPLANE SEVICE 第二页, REQUEST FUEL TR…...

深入探索Midjourney:领航人工智能的新征程

深入探索Midjourney:领航人工智能的新征程 引言 在这个数据驱动、以技术创新为核心的时代,Midjourney以其独特的特性在人工智能领域中崭露头角。作为一款前沿的人工智能工具,它不仅重新定义了人机交互的方式,而且为各行各业提供…...

ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)

ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏) 1.1 漏洞和风险分析 ChatGPT还可以帮助开发人员预测代码的潜在风险,识别其中的安全漏洞,而不必先运行它,这可以让开发人员及早发现错误&#xff0…...

【AIGC】Stable Diffusion 的提示词入门

一、正向提示词和反向提示词 Stable Diffusion 中的提示词通常用于指导用户对生成的图像进行控制。这些提示词可以分为正向提示词(Positive Prompts)和反向提示词(Negative Prompts)两类,它们分别影响图像生成过程中的…...

力扣---通配符匹配

题目描述: 给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 ? 和 * 匹配规则的通配符匹配: ? 可以匹配任何单个字符。 * 可以匹配任意字符序列(包括空字符序列)。 判定匹配成功的充要条件是&#xff…...

Rust 原生类型

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、标量类型(scalar type)二、 复合类型(compound type)总结 前言 Rust 学习系列 ,rust中的原生类…...

09、全文检索 -- Solr -- SpringBoot 整合 Spring Data Solr (生成DAO组件 和 实现自定义查询方法)

目录 SpringBoot 整合 Spring Data SolrSpring Data Solr的功能(生成DAO组件):Spring Data Solr大致包括如下几方面功能:Query查询(属于半自动)代码演示:1、演示通过dao组件来保存文档1、实体类…...

C# CAD SelectionFilter下TypedValue数组

SelectionFilter是用于过滤AutoCAD实体的类,在AutoCAD中,可以使用它来选择具有特定属性的实体。构造SelectionFilter对象时,需要传入一个TypedValue数组,它用于定义选择规则。 在TypedValue数组中,每个元素表示一个选…...

python 爬虫篇(3)---->Beautiful Soup 网页解析库的使用(包含实例代码)

Beautiful Soup 网页解析库的使用 文章目录 Beautiful Soup 网页解析库的使用前言一、安装Beautiful Soup 和 lxml二、Beautiful Soup基本使用方法标签选择器1 .string --获取文本内容2 .name --获取标签本身名称3 .attrs[] --通过属性拿属性的值标准选择器find_all( name , at…...

第十二周学习报告

比赛 参加了一场 div 2 ,B 题,C 题没写出来,B 是一个排序去重+双指针,C题是要观察出一个数学结论(因为数据范围太大,我暴力做直接超时了) 排 6253 ,表现分是 998 &…...

Redis面试题整理(持续更新)

1. 缓存穿透? 缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致DB挂掉,这种情况大概率是遭到了攻击。 解决方案: …...

一周学会Django5 Python Web开发-Django5 Hello World编写

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计14条视频,包括:2024版 Django5 Python we…...

讲解用Python处理Excel表格

我们今天来一起探索一下用Python怎么操作Excel文件。与word文件的操作库python-docx类似,Python也有专门的库为Excel文件的操作提供支持,这些库包括xlrd、xlwt、xlutils、openpyxl、xlsxwriter几种,其中我最喜欢用的是openpyxl,这…...

WEB APIs(1)

变量声明const(修饰常量) const优先,如react,基本const, 对于引用数据类型,可用const声明,因为储存的是地址 何为APIs 可以使用js操作HTML和浏览器 分类:DOM(文档对象…...

C++重新入门-基本输入输出

C 的 I/O 发生在流中,流是字节序列。如果字节流是从设备(如键盘、磁盘驱动器、网络连接等)流向内存,这叫做输入操作。如果字节流是从内存流向设备(如显示屏、打印机、磁盘驱动器、网络连接等),这…...

【C语言】解析刘谦春晚魔术《守岁共此时》

今年的春晚上刘谦表演了魔术《守岁共此时》,台上台下积极互动(尤其是小尼),十分的有趣。刘谦老师的魔术不仅仅是他的高超手法,还有这背后的严谨逻辑,下面我们来用C语言来解析魔术吧。 源代码 #define _CRT…...

剑指offer——数值的整数次方

目录 1. 题目描述2. 一般思路2.1 有问题的思路2.2 全面但不高效的思路2.3 面试小提示 3. 全面又高效的思路 1. 题目描述 题目:实现函数 double Power(double base,int exponent),求base 的exponent 次方。不得使用库函数,同时不需要考虑大数问题 2. 一般…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

pam_env.so模块配置解析

在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

dify打造数据可视化图表

一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...