当前位置: 首页 > news >正文

线性代数笔记2--矩阵消元

0. 简介

矩阵消元

1. 消元过程

实例方程组
{ x + 2 y + z = 2 3 x + 8 y + z = 12 4 y + z = 2 \begin{cases} x+2y+z=2\\ 3x+8y+z=12\\ 4y+z=2 \end{cases} x+2y+z=23x+8y+z=124y+z=2
矩阵化
A = [ 1 2 1 3 8 1 0 4 1 ] X = [ x y z ] A= \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \\ X= \begin{bmatrix} x\\y\\z \end{bmatrix} A= 130284111 X= xyz
B = [ 2 12 2 ] B= \begin{bmatrix} 2\\12\\2 \end{bmatrix} B= 2122
消元

[ 1 2 1 3 8 1 0 4 1 ] ⟶ ( 2 , 1 ) [ 1 2 1 0 2 − 2 0 4 1 ] ⟶ ( 3 , 2 ) [ 1 2 1 0 2 − 2 0 0 5 ] \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \stackrel{(2,1)}{\longrightarrow} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \stackrel{(3,2)}\longrightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} 130284111 (2,1) 100224121 (3,2) 100220125
回代
[ 2 12 2 ] ⟶ r o w 2 − 3 r o w 1 [ 2 6 2 ] ⟶ r o w 3 − 2 r o w 2 [ 2 6 − 10 ] \begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix} \stackrel{row_2-3row_1}\longrightarrow \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} \stackrel{row_3-2row_2}\longrightarrow \begin{bmatrix} 2 \\ 6 \\-10 \end{bmatrix} 2122 row23row1 262 row32row2 2610
求解
[ 1 2 1 0 2 − 2 0 0 5 ] [ x y z ] = [ 2 6 − 10 ] \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\z \end{bmatrix} =\begin{bmatrix} 2 \\ 6 \\ -10 \end{bmatrix} 100220125 xyz = 2610
结果
[ x y z ] = [ 2 1 − 2 ] \begin{bmatrix} x \\y \\z \end{bmatrix}= \begin{bmatrix} 2\\1 \\ -2 \end{bmatrix} xyz = 212

2. 消元矩阵

将上述消元的过程变为矩阵相乘的形式。

向量式思考
矩阵乘列向量
[ . . . . . . . . . ] [ x y z ] = [ x ∗ c o l 1 + y ∗ c o l 2 + z ∗ c o l 3 ] \begin{bmatrix} . & . & .\\ . & . & .\\ . & . & . \end{bmatrix} \begin{bmatrix}\ x \\ y\\ z \end{bmatrix}= \begin{bmatrix} x*col1 +y*col2 +z*col3 \end{bmatrix} .........  xyz =[xcol1+ycol2+zcol3]
行向量乘矩阵
[ x y z ] [ . . . . . . . . . ] = [ x ∗ r o w 1 + y ∗ r o w 2 + z ∗ r o w 3 ] \begin{bmatrix}\ x \ y\ z \end{bmatrix} \begin{bmatrix} . & . & .\\ . & . & .\\ . & . & . \end{bmatrix}= \begin{bmatrix} x*row1 \\+\\y*row2 \\+\\z*row3 \end{bmatrix} [ x y z] ......... = xrow1+yrow2+zrow3
一个矩阵左边乘一个单位矩阵并不改变其值
A = [ 1 2 1 3 8 1 0 4 1 ] = [ 1 0 0 0 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] A= \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix} A= 130284111 = 100010001 130284111
而做行的加减则可以
A = [ 1 2 1 3 8 1 0 4 1 ] A ′ = [ 1 0 0 − 3 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] A= \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix}\\ A'= \begin{bmatrix} 1 & 0 &0\\ -3 & 1 & 0\\ 0 &0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 &1 \end{bmatrix}=\\ \begin{bmatrix} 1 & 2 &1 \\ 0 & 2 & -2\\ 0& 4 & 1 \end{bmatrix} A= 130284111 A= 130010001 130284111 = 100224121
实际上这个过程就是,我们在之前的消元过程中的第二行减去三倍第一行的过程。我们继续下去将这个矩阵对角化。
A ′ ′ = [ 1 0 0 0 1 0 0 − 2 1 ] A ′ = [ 1 0 0 0 1 0 0 − 2 1 ] [ 1 2 1 0 2 − 2 0 4 1 ] = [ 1 2 1 0 2 − 2 0 0 5 ] A''= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} A'\\= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix}\\= \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} A′′= 100012001 A= 100012001 100224121 = 100220125

我们令最后的上三角矩阵为
U = [ 1 2 1 0 2 − 2 0 0 5 ] U=\begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} U= 100220125
两个变换矩阵为
E 21 = [ 1 0 0 − 3 1 0 0 0 1 ] E 32 = [ 1 0 0 0 1 0 0 − 2 1 ] E_{21}=\begin{bmatrix} 1 & 0 &0\\ -3 & 1 & 0\\ 0 &0 & 1 \end{bmatrix} \\ E_{32}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} E21= 130010001 E32= 100012001
E 32 ( E 21 A ) = U E_{32}(E_{21}A)=U E32(E21A)=U
而矩阵乘法满足结合律证明即
E 32 E 21 A = E 32 ( E 21 A ) E_{32}E_{21}A=E_{32}(E_{21}A) E32E21A=E32(E21A)
所以最终消元的过程变成了寻找矩阵E的过程
E = E 32 E 21 E=E_{32}E_{21} E=E32E21
这一过程。

3. 置换矩阵

在上述的消元矩阵中,我们并没有进行列的交换。那么如何进行交换呢?

我们知道在原矩阵基础左边乘单位矩阵,矩阵不会发生变化。
A = [ 1 2 3 4 ] = [ 1 0 0 1 ] [ 1 2 3 4 ] A= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}=\ \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]= [1001][1324]

如何交换两行呢,将单位矩阵变形
A ′ = [ 0 1 1 0 ] [ 1 2 3 4 ] = [ 3 4 1 2 ] A'= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}= \begin{bmatrix} 3 & 4\\ 1 & 2 \end{bmatrix} A=[0110][1324]=[3142]
推广到多行
A = [ 1 2 3 4 5 6 7 8 9 ] A= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix} A= 147258369

  • 行变换
    交换第一行和第三行
    A ′ = [ 0 0 1 0 1 0 1 0 0 ] [ 1 2 3 4 5 6 7 8 9 ] A'= \begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} A= 001010100 147258369
    交换第一行和第二行
    A ′ ′ = [ 0 1 0 1 0 0 0 0 1 ] [ 1 2 3 4 5 6 7 8 9 ] A''= \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} A′′= 010100001 147258369

所以交换任意两行,只需将单位矩阵中对应行 1 1 1的位置进行交换。

  • 列变换

在矩阵左边乘是对原矩阵行变换,而在矩阵右边则是列变换
交换矩阵两列
A = [ 1 2 3 4 ] A ′ = [ 1 2 3 4 ] [ 0 1 1 0 ] = [ 2 1 4 3 ] A= \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \\ A'= \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}= \begin{bmatrix} 2 & 1\\ 4 & 3 \end{bmatrix} A=[1324]A=[1324][0110]=[2413]

交换多列也是一样的效果
交换第 1 1 1 2 2 2
A = [ 1 2 3 4 5 6 7 8 9 ] A ′ = [ 1 2 3 4 5 6 7 8 9 ] [ 0 1 0 1 0 0 0 0 1 ] = [ 2 1 3 5 4 6 8 7 9 ] A= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9\\ \end{bmatrix} \\ A'= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9\\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\\ \end{bmatrix}= \begin{bmatrix} 2 & 1 & 3\\ 5 & 4 & 6\\ 8 & 7 & 9\\ \end{bmatrix} A= 147258369 A= 147258369 010100001 = 258147369

所以交换任意两列,只需将单位矩阵中对应行 1 1 1的位置进行交换。
与行交换的不同地方在于,矩阵乘的在右边了。

4. 矩阵的逆

A = [ 1 0 0 − 3 1 0 0 0 1 ] A − 1 = [ 1 0 0 3 1 0 0 0 1 ] A − 1 A = [ 1 0 0 3 1 0 0 0 1 ] [ 1 0 0 − 3 1 0 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] A= \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 &0\\ 0 & 0 & 1 \end{bmatrix}\\ A^{-1}= \begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix}\\ A^{-1}A= \begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 &0\\ 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0\\ 0 & 0 & 1 \end{bmatrix} A= 130010001 A1= 130010001 A1A= 130010001 130010001 = 100010001

相关文章:

线性代数笔记2--矩阵消元

0. 简介 矩阵消元 1. 消元过程 实例方程组 { x 2 y z 2 3 x 8 y z 12 4 y z 2 \begin{cases} x2yz2\\ 3x8yz12\\ 4yz2 \end{cases} ⎩ ⎨ ⎧​x2yz23x8yz124yz2​ 矩阵化 A [ 1 2 1 3 8 1 0 4 1 ] X [ x y z ] A \begin{bmatrix} 1 & 2 & 1 \\ 3 & …...

透光力之珠——光耦固态继电器的独特特点解析

光耦固态继电器作为现代电子控制领域中的重要组件,以其独特的特点在工业、通信、医疗等多个领域得到广泛应用。本文将深入剖析光耦固态继电器的特点,揭示其在电子控制中的卓越性能。 光耦固态继电器的光电隔离技术 光耦固态继电器以其光电隔离技术而脱颖…...

C#系列-​​​​​​​EntityFrameworkCore.Transactions.Abstractions应用场景+实例(38)

EntityFrameworkCore.Transactions.Abstractions应用场景 EntityFrameworkCore.Transactions.Abstractions 并不是一个官方的或广泛认可的 NuGet 包名称。在 Entity Framework Core (EF Core) 中,事务管理通常是通过 DbContext 的内置方法来实现的,如 Sa…...

PMDG 737

在Simbrief中生成计划后下载两个文件 放到C:\Users\32497\AppData\Local\Packages\Microsoft.FlightSimulator_8wekyb3d8bbwe\LocalState\packages\pmdg-aircraft-737(微软商店版本) 加油 先在飞行计划中查看计划燃油数量 MCDU中, AIRPLANE SEVICE 第二页, REQUEST FUEL TR…...

深入探索Midjourney:领航人工智能的新征程

深入探索Midjourney:领航人工智能的新征程 引言 在这个数据驱动、以技术创新为核心的时代,Midjourney以其独特的特性在人工智能领域中崭露头角。作为一款前沿的人工智能工具,它不仅重新定义了人机交互的方式,而且为各行各业提供…...

ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)

ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏) 1.1 漏洞和风险分析 ChatGPT还可以帮助开发人员预测代码的潜在风险,识别其中的安全漏洞,而不必先运行它,这可以让开发人员及早发现错误&#xff0…...

【AIGC】Stable Diffusion 的提示词入门

一、正向提示词和反向提示词 Stable Diffusion 中的提示词通常用于指导用户对生成的图像进行控制。这些提示词可以分为正向提示词(Positive Prompts)和反向提示词(Negative Prompts)两类,它们分别影响图像生成过程中的…...

力扣---通配符匹配

题目描述: 给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 ? 和 * 匹配规则的通配符匹配: ? 可以匹配任何单个字符。 * 可以匹配任意字符序列(包括空字符序列)。 判定匹配成功的充要条件是&#xff…...

Rust 原生类型

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、标量类型(scalar type)二、 复合类型(compound type)总结 前言 Rust 学习系列 ,rust中的原生类…...

09、全文检索 -- Solr -- SpringBoot 整合 Spring Data Solr (生成DAO组件 和 实现自定义查询方法)

目录 SpringBoot 整合 Spring Data SolrSpring Data Solr的功能(生成DAO组件):Spring Data Solr大致包括如下几方面功能:Query查询(属于半自动)代码演示:1、演示通过dao组件来保存文档1、实体类…...

C# CAD SelectionFilter下TypedValue数组

SelectionFilter是用于过滤AutoCAD实体的类,在AutoCAD中,可以使用它来选择具有特定属性的实体。构造SelectionFilter对象时,需要传入一个TypedValue数组,它用于定义选择规则。 在TypedValue数组中,每个元素表示一个选…...

python 爬虫篇(3)---->Beautiful Soup 网页解析库的使用(包含实例代码)

Beautiful Soup 网页解析库的使用 文章目录 Beautiful Soup 网页解析库的使用前言一、安装Beautiful Soup 和 lxml二、Beautiful Soup基本使用方法标签选择器1 .string --获取文本内容2 .name --获取标签本身名称3 .attrs[] --通过属性拿属性的值标准选择器find_all( name , at…...

第十二周学习报告

比赛 参加了一场 div 2 ,B 题,C 题没写出来,B 是一个排序去重+双指针,C题是要观察出一个数学结论(因为数据范围太大,我暴力做直接超时了) 排 6253 ,表现分是 998 &…...

Redis面试题整理(持续更新)

1. 缓存穿透? 缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致DB挂掉,这种情况大概率是遭到了攻击。 解决方案: …...

一周学会Django5 Python Web开发-Django5 Hello World编写

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计14条视频,包括:2024版 Django5 Python we…...

讲解用Python处理Excel表格

我们今天来一起探索一下用Python怎么操作Excel文件。与word文件的操作库python-docx类似,Python也有专门的库为Excel文件的操作提供支持,这些库包括xlrd、xlwt、xlutils、openpyxl、xlsxwriter几种,其中我最喜欢用的是openpyxl,这…...

WEB APIs(1)

变量声明const(修饰常量) const优先,如react,基本const, 对于引用数据类型,可用const声明,因为储存的是地址 何为APIs 可以使用js操作HTML和浏览器 分类:DOM(文档对象…...

C++重新入门-基本输入输出

C 的 I/O 发生在流中,流是字节序列。如果字节流是从设备(如键盘、磁盘驱动器、网络连接等)流向内存,这叫做输入操作。如果字节流是从内存流向设备(如显示屏、打印机、磁盘驱动器、网络连接等),这…...

【C语言】解析刘谦春晚魔术《守岁共此时》

今年的春晚上刘谦表演了魔术《守岁共此时》,台上台下积极互动(尤其是小尼),十分的有趣。刘谦老师的魔术不仅仅是他的高超手法,还有这背后的严谨逻辑,下面我们来用C语言来解析魔术吧。 源代码 #define _CRT…...

剑指offer——数值的整数次方

目录 1. 题目描述2. 一般思路2.1 有问题的思路2.2 全面但不高效的思路2.3 面试小提示 3. 全面又高效的思路 1. 题目描述 题目:实现函数 double Power(double base,int exponent),求base 的exponent 次方。不得使用库函数,同时不需要考虑大数问题 2. 一般…...

mybatis的if判断==‘1‘不生效,改成‘1‘.toString()才生效的原因

mybatis的xml文件中的if判断‘1’不生效&#xff0c;改成’1’.toString()才生效 Mapper接口传入的参数 List<Table> queryList(Param("state") String state);xml内容 <where><if test"state ! null and state 1">AND EXISTS(select…...

Go 中 map 的双值检测写法详解

Go 中 map 的双值检测写法详解 在 Go 中&#xff0c;if char, exists : pairs[s[i]]; exists { 是一种利用 Go 语言特性编写的优雅条件语句&#xff0c;用于检测 map 中是否存在某个键。让我们分解解释这种写法&#xff1a; 语法结构解析 if value, ok : mapVariable[key]; …...

深入解析CI/CD开发流程

引言&#xff1a;主播最近实习的时候发现部门里面使用的是CI/CD这样的集成开发部署&#xff0c;但是自己不是太了解什么意思&#xff0c;所以就自己查了一下ci/cd相关的资料&#xff0c;整理分享了一下 一、CI/CD CI/CD是持续集成和持续交付部署的缩写&#xff0c;旨在简化并…...

Python训练营-Day22-Titanic - Machine Learning from Disaster

Description linkkeyboard_arrow_up &#x1f44b;&#x1f6f3;️ Ahoy, welcome to Kaggle! You’re in the right place. This is the legendary Titanic ML competition – the best, first challenge for you to dive into ML competitions and familiarize yourself w…...

【element-ui】el-autocomplete实现 无数据匹配

文章目录 方法一&#xff1a;使用 default 插槽方法二&#xff1a;使用 empty-text 属性&#xff08;适用于列表类型&#xff09;总结 在使用 Element UI 的 el-autocomplete 组件时&#xff0c;如果你希望在没有任何数据匹配的情况下显示特定的内容&#xff0c;你可以通过自定…...

美业破局:AI智能体如何用数据重塑战略决策(5/6)

摘要&#xff1a;文章深入剖析美业现状与挑战&#xff0c;指出其市场规模庞大但竞争激烈&#xff0c;面临获客难、成本高、服务标准化缺失等问题。随后阐述 AI 智能体与数据驱动决策的概念&#xff0c;强调其在美业管理中的重要性。接着详细说明 AI 智能体在美业数据收集、整理…...

大故障,阿里云核心域名疑似被劫持

2025年6月5日凌晨&#xff0c;阿里云多个服务突发异常&#xff0c;罪魁祸首居然是它自家的“核心域名”——aliyuncs.com。包括对象存储 OSS、内容分发 CDN、镜像仓库 ACR、云解析 DNS 等服务在内&#xff0c;全部受到波及&#xff0c;用户业务连夜“塌房”。 更让人惊讶的是&…...

AC68U刷梅林384/386版本后不能 降级回380,升降级解决办法

前些时间手贱更新了路由器的固件&#xff0c;384.18版本。结果发现了一堆问题&#xff0c;比如客户端列表加载不出来&#xff0c;软件中心打不开等等。想着再刷一下新的固件&#xff0c;结果死活刷不上去。最后翻阅了大量前辈的帖子找到了相关的处理办法。现在路由器中开启SSH&…...

Linux 下关于 ioremap 系列接口

1、序 在系统运行时&#xff0c;外设 IO 资源的物理地址是已知的&#xff0c;由硬件的设计决定&#xff08;参考SOC的datesheet&#xff0c;一般会有memorymap&#xff09;。驱动程序不能通过物理地址访问IO资源&#xff0c;必须将其映射到内核态的虚拟地址空间。常见的接口就是…...

Java Stream 高级实战:并行流、自定义收集器与性能优化

一、并行流深度实战&#xff1a;大规模数据处理的性能突破 1.1 并行流的核心应用场景 在电商用户行为分析场景中&#xff0c;需要对百万级用户日志数据进行实时统计。例如&#xff0c;计算某时段内活跃用户数&#xff08;访问次数≥3次的用户&#xff09;&#xff0c;传统循环…...