【AIGC】Stable Diffusion 的提示词入门





- 一、正向提示词和反向提示词
Stable Diffusion 中的提示词通常用于指导用户对生成的图像进行控制。这些提示词可以分为正向提示词(Positive Prompts)和反向提示词(Negative Prompts)两类,它们分别影响图像生成过程中的内容和风格。
反向提示词注意增加 nsfw(not safe for work),避免生成办公场所不宜观看内容。
- 二、内容型提示词
人物及主体特征
服饰穿搭: White dress
发型发色: Blonde hair (金发), long hair
五官特点: Small eyes, big mouth
面部表情: Smiling
肢体动作: Stretching arms (伸展手臂)
场景特征
室内、室外: Indoor, outdoor
大场景: Forest, city, street
小细节: Tree, bush, white flower
环境光照
白天黑夜: Day, night
特定时段: Morning, sunset
光环境: Sunlight, bright, dark
天空: Blue sky, starry sky (满天星)
画图视角
距离: Close-up, distant
人物比例: Full body, upper body
观察视角: From above, view of back
镜头类型: Wide angle, Sony A7 III
- 三、标准化提示词
画质提示词
HDR, HD,UHD, 64K: 提高图像的分辨率和质量,呈现更清晰、更逼真的效果。
Highly detailed: 添加更多细节,使图像更加丰富和真实。
Studio lighting: 使用专业灯光效果,增强图像的光影层次和立体感。
Professional: 自动调整对比度和色彩,呈现专业级别的图像效果。
Vivid Colors: 强化色彩饱和度,让图像更加鲜艳生动。
Bokeh: 背景虚化,突出人物主体,创造出唯美的效果。
High quality: 高品质的图像表现,保证图像细节和色彩的精准呈现。
Masterpiece: 杰作级别的效果,展示出卓越的视觉艺术品质。
Best quality: 最佳图像质量,无可挑剔的视觉体验。
Photography: 摄影级别的图像效果,呈现出专业摄影作品般的感觉。
Ultra high-res: 超高分辨率的图像,提供极致的视觉享受。
RAW photo: 原始照片级别的效果,保留了图像的所有原始细节和色彩。
特定高分辨率类型: Extremely detailed CG unity 8k wallpaper (超精细的8kUnity游戏CG), unreal engine rendered (虚幻引擎渲染)
画风提示词
插画风: Illustration (插图), painting, paintbrush
二次元: Anime, comic, game CG
写实系: Photorealistic (照片级的), realistic, photograph (照片)
- 四、其他
元素的融合和精细控制:
使用括号控制权重,小括号表示1.1倍,中括号表示降权,大括号表示1.05倍。
元素的混合和选择可以通过括号混合不同元素,使用AND连接多个元素,或者使用冒号和数字进行精细控制。
画面的比重控制:
使用百分比或步数来控制不同元素在画面中的比重,可以通过中括号和冒号的方式进行设置。
元素随机选择:
使用大括号来表示元素的随机选择,可以增加图像的多样性和趣味性。
词汇顺序/数量/位置影响:
开头和结尾的词汇作用更加强烈,数量越多,单个词汇的作用越弱,位置对词汇的相关性有影响。
通过合适的分组和分割,可以充分利用提示词的权重和效果。
相关文章:
【AIGC】Stable Diffusion 的提示词入门
一、正向提示词和反向提示词 Stable Diffusion 中的提示词通常用于指导用户对生成的图像进行控制。这些提示词可以分为正向提示词(Positive Prompts)和反向提示词(Negative Prompts)两类,它们分别影响图像生成过程中的…...
力扣---通配符匹配
题目描述: 给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 ? 和 * 匹配规则的通配符匹配: ? 可以匹配任何单个字符。 * 可以匹配任意字符序列(包括空字符序列)。 判定匹配成功的充要条件是ÿ…...
Rust 原生类型
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、标量类型(scalar type)二、 复合类型(compound type)总结 前言 Rust 学习系列 ,rust中的原生类…...
09、全文检索 -- Solr -- SpringBoot 整合 Spring Data Solr (生成DAO组件 和 实现自定义查询方法)
目录 SpringBoot 整合 Spring Data SolrSpring Data Solr的功能(生成DAO组件):Spring Data Solr大致包括如下几方面功能:Query查询(属于半自动)代码演示:1、演示通过dao组件来保存文档1、实体类…...
C# CAD SelectionFilter下TypedValue数组
SelectionFilter是用于过滤AutoCAD实体的类,在AutoCAD中,可以使用它来选择具有特定属性的实体。构造SelectionFilter对象时,需要传入一个TypedValue数组,它用于定义选择规则。 在TypedValue数组中,每个元素表示一个选…...
python 爬虫篇(3)---->Beautiful Soup 网页解析库的使用(包含实例代码)
Beautiful Soup 网页解析库的使用 文章目录 Beautiful Soup 网页解析库的使用前言一、安装Beautiful Soup 和 lxml二、Beautiful Soup基本使用方法标签选择器1 .string --获取文本内容2 .name --获取标签本身名称3 .attrs[] --通过属性拿属性的值标准选择器find_all( name , at…...
第十二周学习报告
比赛 参加了一场 div 2 ,B 题,C 题没写出来,B 是一个排序去重+双指针,C题是要观察出一个数学结论(因为数据范围太大,我暴力做直接超时了) 排 6253 ,表现分是 998 &…...
Redis面试题整理(持续更新)
1. 缓存穿透? 缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致DB挂掉,这种情况大概率是遭到了攻击。 解决方案: …...
一周学会Django5 Python Web开发-Django5 Hello World编写
锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计14条视频,包括:2024版 Django5 Python we…...
讲解用Python处理Excel表格
我们今天来一起探索一下用Python怎么操作Excel文件。与word文件的操作库python-docx类似,Python也有专门的库为Excel文件的操作提供支持,这些库包括xlrd、xlwt、xlutils、openpyxl、xlsxwriter几种,其中我最喜欢用的是openpyxl,这…...
WEB APIs(1)
变量声明const(修饰常量) const优先,如react,基本const, 对于引用数据类型,可用const声明,因为储存的是地址 何为APIs 可以使用js操作HTML和浏览器 分类:DOM(文档对象…...
C++重新入门-基本输入输出
C 的 I/O 发生在流中,流是字节序列。如果字节流是从设备(如键盘、磁盘驱动器、网络连接等)流向内存,这叫做输入操作。如果字节流是从内存流向设备(如显示屏、打印机、磁盘驱动器、网络连接等),这…...
【C语言】解析刘谦春晚魔术《守岁共此时》
今年的春晚上刘谦表演了魔术《守岁共此时》,台上台下积极互动(尤其是小尼),十分的有趣。刘谦老师的魔术不仅仅是他的高超手法,还有这背后的严谨逻辑,下面我们来用C语言来解析魔术吧。 源代码 #define _CRT…...
剑指offer——数值的整数次方
目录 1. 题目描述2. 一般思路2.1 有问题的思路2.2 全面但不高效的思路2.3 面试小提示 3. 全面又高效的思路 1. 题目描述 题目:实现函数 double Power(double base,int exponent),求base 的exponent 次方。不得使用库函数,同时不需要考虑大数问题 2. 一般…...
Tied Block Convolution: 具有共享较薄滤波器的更简洁、更出色的CNN
摘要 https://arxiv.org/pdf/2009.12021.pdf 卷积是卷积神经网络(CNN)的主要构建块。我们观察到,随着通道数的增加,优化后的CNN通常具有高度相关的滤波器,这降低了特征表示的表达力。我们提出了Tied Block Convolutio…...
算法沉淀——BFS 解决 FloodFill 算法(leetcode真题剖析)
算法沉淀——BFS 解决 FloodFill 算法 01.图像渲染02.岛屿数量03.岛屿的最大面积04.被围绕的区域 BFS(广度优先搜索)解决 Flood Fill 算法的基本思想是通过从起始点开始,逐层向外扩展,访问所有与起始点相连且具有相同特性…...
wordpress外贸成品网站模板
首页大图slider轮播,橙色风格的wordpress外贸网站模板 https://www.zhanyes.com/waimao/6250.html 蓝色经典风格的wordpress外贸建站模板 https://www.zhanyes.com/waimao/6263.html...
如何使用六图一表七种武器
六图一表七种武器用于质量管理: 描述当遇到问题时应该用那张图来解决: 一、如果题目说出了质量问题需要找原因? 解:用因果图,因果图也称石川图或鱼骨图 二、如果要判断过程是否稳定受控? 解:…...
阿里云游戏服务器租用费用价格组成,费用详单
阿里云游戏服务器租用价格表:4核16G服务器26元1个月、146元半年,游戏专业服务器8核32G配置90元一个月、271元3个月,阿里云服务器网aliyunfuwuqi.com分享阿里云游戏专用服务器详细配置和精准报价: 阿里云游戏服务器租用价格表 阿…...
【C++】C++11上
C11上 1.C11简介2.统一的列表初始化2.1 {} 初始化2.2 initializer_list 3.变量类型推导3.1auto3.2decltype3.3nullptr 4.范围for循环5.final与override6.智能指针7. STL中一些变化8.右值引用和移动语义8.1左值引用和右值引用8.2左值引用与右值引用比较8.3右值引用使用场景和意义…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
[特殊字符] 手撸 Redis 互斥锁那些坑
📖 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作,想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁,也顺便跟 Redisson 的 RLock 机制对比了下,记录一波,别踩我踩过…...
