当前位置: 首页 > news >正文

PointMixer论文阅读笔记

MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set, inter-set, hierarchical-set的点云。PointMixer这偏论文还很好的证明了chanel-mixing MLP是比token-mixing MLP效果更好,对称encoder和decoder结构能够更好的处理点云问题。

为了方便论文阐述,做以下规定:
P是点云的总和
X是点云特性的总和
Y是output特性的总和
pi是i点云的位置
xi是i点云相关的特性
yi是i点云output的特性
Mi是pi点周围邻居点的集合,常表示为Mi = kNN(P, pi)

PointNet++: 使用kNN和最远点sampling算法,使用不对称的encoder和decoder。PointNet++网络不对整个点云直接分析,而是locally的处理然后再整合在一起。
yi = maxpooling(MLP(concat(xi, pi - pj)));j是Mi的成员

PointTransformer: 也是使用了kNN的方法
yi = sum(softmax(MLP(W1(xi) - W2(xj) + δ(pi - pj)))(W3(xj) + δ(pi - pj)))
W为linear transformer metric,δ为positional encoding vector。

MLP-Mixer: MLP-mixer分为token-mix MLP和channel-mix MLP, MLP-Mixer使用K个tokens有C维features, tokens是将图片分割成小块。 第一步是token-mixing MLPs, 第二步时channel-mixing MLP, token mixing是混合空间轴和维度轴到空间轴,channel-mixing是将空间信息转为维度和空间信息。
MLP-Mixer将CNN的两个任务切割开来,不同位置的mix叫token-mixing,同一位置不同channel的mix叫做channel-mixing。
X’ = X + (W2ρ(W1(Layernorm(X))T))T
Y = X’ + W4ρ(W3Layernorm(X’))
W是MLP,ρ是GELU
token-mix MLPs具有转置同变性,所以点云的输入顺序特别重要。需要在token-mix前再加一层转置不变的网络。
并且MLP-mixer只能处理inter-set的点云,还有很大的提升空间。
https://zhuanlan.zhihu.com/p/372692759

PointMixer:
sj = g2(concat(g1(xj); δ(pi - pj))); j属于Mi, g是channel-mix MLP, δ是positional encoding vector
yi = sum(softmax(sj) * g(xj)); 这里的乘法的element-wise
PointMixer的主要创新点是使用了positional embedding, 使用了softmax,不使用token-mix MLP

为什么不使用token-mix? token-mix MLP具有转置同变性的缺点,而且token-mix只能使用固定数量的输入,但是对于点云来说,neighbor不是固定的,要用聚类算法。

intra-set mixing 使用最传统的kNN

inter-set mixing 使用变种的query-kNN

hierarchical-set mixing 使用变种的hierarchical-kNN

对称性也表现在kNN的集合里面,encoder和decoder的M集是完全颠倒的。

相关文章:

PointMixer论文阅读笔记

MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以…...

[word] word分割线在哪里设置 #其他#经验分享

word分割线在哪里设置 在工作中有些技巧,可以快速提高工作效率,解决大部分工作,今天给大家分享word分割线在哪里设置的小技能,希望可以帮助到你。 1、快速输入分割线 输入三个【_】按下回车就是一条长直线,同样分别…...

C++ 音视频原理

本篇文章我们来描述一下音视频原理 音视频录制原理: 下面是对这张思维导图的介绍 摄像头部分: 麦克风采集声音 摄像头采集画面 摄像头采集回来的数据可以用RGB也可以用YUV来表示 图像帧帧率 一秒能处理多少张图像 图像处理 :调亮度 图像帧队列 :意思是将数据取…...

C# 只允许开启一个exe程序

C# 只允许开启一个exe程序 第一种方法 电脑只能启动一次再次点击显示当前exe程序 using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Runtime.InteropServices; using System.Threading.Tasks; using System.Win…...

【Java程序员面试专栏 分布式中间件】Redis 核心面试指引

关于Redis部分的核心知识进行一网打尽,包括Redis的基本概念,基本架构,工作流程,存储机制等,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 基础概念 明确redis的特性、应用场景和数据结构 什么是Redis,Redis有哪些应用场景 Redi…...

2024年【高处安装、维护、拆除】模拟考试题库及高处安装、维护、拆除实操考试视频

题库来源:安全生产模拟考试一点通公众号小程序 高处安装、维护、拆除模拟考试题库是安全生产模拟考试一点通生成的,高处安装、维护、拆除证模拟考试题库是根据高处安装、维护、拆除最新版教材汇编出高处安装、维护、拆除仿真模拟考试。2024年【高处安装…...

【QT+QGIS跨平台编译】之三十七:【Shapelib+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、Shapelib介绍二、Shapelib下载三、文件分析四、pro文件五、编译实践一、Shapelib介绍 Shapelib是一个开源的C库,用于读取、写入和操作ESRI Shapefile格式的地理矢量数据。 ESRI Shapefile是一种常见的地理信息系统(GIS)文件格式,用于存储地理矢量数据,包括…...

【机器学习基础】决策树(Decision Tree)

🚀个人主页:为梦而生~ 关注我一起学习吧! 💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~ ⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战 欢迎订阅&am…...

图神经网络DGL框架,graph classification,多个且不同维度的node feature 训练

node feature 维度不同 我现在有许多不同的图要加入训练,每个图的节点特征维度不同,第一张图n_weight特征有10条数据,第二张图n_weight特征有15条数据,但是训练的时候,需要维度都对其,所以直接做0 padding…...

蓝桥杯(Web大学组)2022国赛真题:用什么来做计算 A

判分标准 实现重置(AC)功能,得 1 分。 实现计算式子和结果显示功能,得 3 分。 实现计算功能,得 6 分。 应该按要求来就行吧,,一开始还在想是否要考虑小数点个数的问题还有式子是否有效…… 笔记…...

Linux POSIX信号量 线程池

Linux POSIX信号量 线程池 一. 什么是POSIX信号量?二. POSIX信号量实现原理三. POSIX信号量接口函数四. 基于环形队列的生产消费模型五. 线程池 一. 什么是POSIX信号量? POSIX信号量是一种用于同步和互斥操作的机制,属于POSIX(Po…...

Sentinel(理论版)

Sentinel 1.什么是Sentinel Sentinel 是一个开源的流量控制组件,它主要用于在分布式系统中实现稳定性与可靠性,如流量控制、熔断降级、系统负载保护等功能。简单来说,Sentinel 就像是一个交通警察,它可以根据系统的实时流量&…...

python3 获取某个文件夹所有的pdf文件表格提取表格并一起合并到excel文件

下面是一个完整的示例,其中包括了merge_tables_to_excel函数的定义,并且假设该函数的功能是从每个PDF文件中提取第一个表格并将其合并到一个Excel文件中: import os from pathlib import Path import pandas as pd import pdfplumber …...

【AIGC】Stable Diffusion的模型入门

下载好相关模型文件后,直接放入Stable Diffusion相关目录即可使用,Stable Diffusion 模型就是我们日常所说的大模型,下载后放入**\webui\models\Stable-diffusion**目录,界面上就会展示相应的模型选项,如下图所示。作者…...

【JavaEE】_HTTP请求首行详情

目录 1. URL 2. 方法 2.1 GET方法 2.2 POST方法 2.3 GET与POST的区别 2.4 低频使用方法 1. URL 在mysql JDBC中已经提到过URL的相关概念: 如需查看有关JDBC更多内容,原文链接如下: 【MySQL】_JDBC编程-CSDN博客 URL用于描述某个资源…...

Linux第48步_编译正点原子的出厂Linux内核源码

编译正点原子的出厂 Linux 内核源码,为后面移植linux做准备。研究对象如下: 1)、linux内核镜像文件“uImage” 路径为“arch/arm/boot”; 2)、设备树文件“stm32mp157d-atk.dtb” 路径为“arch/arm/boot/dts” 3)、默认配置文件“stm32m…...

程序员为什么不喜欢关电脑?

程序员为什么不喜欢关电脑? 本人40 最近待业。,希望 3月前能再就业吧!就不喜欢关电脑 这个问题来说是不好习惯。毕竟你的电脑不是服务器,哈哈。但是程序员都很懒,能自动化的,就让机器干。我在此之前 也工作…...

【初始RabbitMQ】了解和安装RabbitMQ

RabbitMQ的概念 RabbitMQ是一个消息中间件:他可以接受并转发消息。例如你可以把它当做一个快递站点,当你要发送一个包 裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑 RabbitMQ 是 …...

Linux第56步_根文件系统第3步_将busybox构建的根文件系统烧录到EMMC

1、第1次将“rootfs”打包 1)、打开第1个终端,准备在“mnt”目录下创建挂载目录“rootfs”; 输入“ls回车” 输入“cd /mnt回车” 输入“ls回车”,查看“mnt”目录下的文件和文件夹 输入“sudo mkdir rootfs回车”,在“mnt”…...

Linux进程间通信(三)-----System V消息队列

消息队列的概念及原理 消息队列实际上就是在系统当中创建了一个队列,队列当中的每个成员都是一个数据块,这些数据块都由类型和信息两部分构成,两个互相通信的进程通过某种方式看到同一个消息队列,这两个进程向对方发数据时&#x…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...