当前位置: 首页 > news >正文

【AIGC】Stable Diffusion的模型入门

下载好相关模型文件后,直接放入Stable Diffusion相关目录即可使用,Stable Diffusion 模型就是我们日常所说的大模型,下载后放入**\webui\models\Stable-diffusion**目录,界面上就会展示相应的模型选项,如下图所示。作者用夸克网盘分享了「大模型」
链接:https://pan.quark.cn/s/bd3491e51998
提取码:f5c2

chilloutmix_NiPrunedFp32Fix.safetensors 亚太真人风格
majicmixRealistic_v7.safetensors 麦橘写实风格模型

在这里插入图片描述
Stable Diffusion 模型:
类型:生成模型,用于从随机噪声中生成逼真的图像。
功能:主要用于生成高质量的图像,可应用于艺术创作、图像编辑、视觉效果等领域。
结构:通常由生成器和判别器组成,通过学习图像数据的概率分布来生成新的图像。

Lora 模型:
类型:图像生成模型,特定于 Stable Diffusion 的一个子模型。
功能:Lora 模型是 Stable Diffusion 模型的一种变体,用于生成图像。
结构:具体结构可能因实现而异,但通常与 Stable Diffusion 模型类似,通过学习图像数据的概率分布来生成新的图像。

Lora 模型可能使用了 Stable Diffusion 中特定的训练方法或技巧,以提高模型的性能和稳定性。这些方法可能包括对训练过程中的损失函数、优化器和学习率的调整,以及对训练数据和噪声分布的处理。Lora 模型是 Stable Diffusion 的一个变体,它在图像生成方面可能具有一些特定的优化或改进。
在这里插入图片描述
Embedding 模型:
类型:自然语言处理模型,用于将文本转换为低维向量表示。
功能:主要用于文本处理任务,如语义分析、情感分析、命名实体识别等。
结构:通常由神经网络组成,将单词或标记映射到连续的低维向量空间中。

在 Stable Diffusion 中,Embedding 模型可能被用于将文本描述或提示转换为向量表示,以便与图像生成模型进行输入嵌入。这些文本描述可以指导模型生成特定主题、风格或内容的图像。通过将文本与图像关联起来,Embedding 模型可以帮助 Stable Diffusion 模型更好地理解文本提示并生成相关的图像
在这里插入图片描述
Hypernetworks 模型:
类型:神经网络结构,用于动态生成其他神经网络的参数。
功能:主要用于动态生成神经网络的参数,可用于模型个性化、迁移学习等任务。
结构:通常包含一个主网络和一个或多个次要网络,主网络用于生成参数,次要网络用于执行任务。

通过引入 Hypernetworks,Stable Diffusion 可能可以更灵活地调整模型的结构和参数,从而适应不同的数据集或任务。Hypernetworks 可能还可以用于个性化模型,使其更好地适应特定用户或应用场景

文生图示例
使用chilloutmix_NiPrunedFp32Fix.safetensors模型生成示例,在左上下拉框选择相应的大模型,输入正面提示词和负面提示词,点击生成

quality,masterpiece,realistic,ballerina,female,yoga_pants,black_choker,Hands on waist,smile,mansion,simple_background,
Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2022028845, Size: 512x768, Model hash: fc2511737a, Model: chilloutmix_NiPrunedFp32Fix, ADetailer model: face_yolov8n.pt, ADetailer confidence: 0.3, ADetailer dilate erode: 4, ADetailer mask blur: 4, ADetailer denoising strength: 0.4, ADetailer inpaint only masked: True, ADetailer inpaint padding: 32, ADetailer version: 24.1.2, Version: v1.7.0

在这里插入图片描述
在这里插入图片描述

相关文章:

【AIGC】Stable Diffusion的模型入门

下载好相关模型文件后,直接放入Stable Diffusion相关目录即可使用,Stable Diffusion 模型就是我们日常所说的大模型,下载后放入**\webui\models\Stable-diffusion**目录,界面上就会展示相应的模型选项,如下图所示。作者…...

【JavaEE】_HTTP请求首行详情

目录 1. URL 2. 方法 2.1 GET方法 2.2 POST方法 2.3 GET与POST的区别 2.4 低频使用方法 1. URL 在mysql JDBC中已经提到过URL的相关概念: 如需查看有关JDBC更多内容,原文链接如下: 【MySQL】_JDBC编程-CSDN博客 URL用于描述某个资源…...

Linux第48步_编译正点原子的出厂Linux内核源码

编译正点原子的出厂 Linux 内核源码,为后面移植linux做准备。研究对象如下: 1)、linux内核镜像文件“uImage” 路径为“arch/arm/boot”; 2)、设备树文件“stm32mp157d-atk.dtb” 路径为“arch/arm/boot/dts” 3)、默认配置文件“stm32m…...

程序员为什么不喜欢关电脑?

程序员为什么不喜欢关电脑? 本人40 最近待业。,希望 3月前能再就业吧!就不喜欢关电脑 这个问题来说是不好习惯。毕竟你的电脑不是服务器,哈哈。但是程序员都很懒,能自动化的,就让机器干。我在此之前 也工作…...

【初始RabbitMQ】了解和安装RabbitMQ

RabbitMQ的概念 RabbitMQ是一个消息中间件:他可以接受并转发消息。例如你可以把它当做一个快递站点,当你要发送一个包 裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑 RabbitMQ 是 …...

Linux第56步_根文件系统第3步_将busybox构建的根文件系统烧录到EMMC

1、第1次将“rootfs”打包 1)、打开第1个终端,准备在“mnt”目录下创建挂载目录“rootfs”; 输入“ls回车” 输入“cd /mnt回车” 输入“ls回车”,查看“mnt”目录下的文件和文件夹 输入“sudo mkdir rootfs回车”,在“mnt”…...

Linux进程间通信(三)-----System V消息队列

消息队列的概念及原理 消息队列实际上就是在系统当中创建了一个队列,队列当中的每个成员都是一个数据块,这些数据块都由类型和信息两部分构成,两个互相通信的进程通过某种方式看到同一个消息队列,这两个进程向对方发数据时&#x…...

Elasticsearch:混合搜索是 GenAI 应用的未来

在这个竞争激烈的人工智能时代,自动化和数据为王。 从庞大的存储库中有效地自动化搜索和检索信息的过程的能力变得至关重要。 随着技术的进步,信息检索方法也在不断进步,从而导致了各种搜索机制的发展。 随着生成式人工智能模型成为吸引力的中…...

态、势、感、知的偏序、全序与无序

在态势感知中,"态"、"势"、"感"和"知"可以被理解为描述不同层次的概念。而在偏序、全序和无序方面,它们可以有不同的关系,简单地说,偏序关系表示部分的可比较性,全序关系表示…...

【从Python基础到深度学习】 8. VIM两种状态

一、安装 sudo apt install vim 二、VIM两种模式 - 命令状态/编辑状态 1.1 进入/退出VIM 进入VIM vim 退出vim :q <enter> 2.2 根目录下添加配置文件 window下创建vimrc类型文件内容如下&#xff1a; set nu set cursorline set hlsearch set tabstop4 使用Wins…...

java微服务面试篇

目录 目录 SpringCloud Spring Cloud 的5大组件 服务注册 Eureka Nacos Eureka和Nacos的对比 负载均衡 负载均衡流程 Ribbon负载均衡策略 自定义负载均衡策略 熔断、降级 服务雪崩 服务降级 服务熔断 服务监控 为什么需要监控 服务监控的组件 skywalking 业务…...

OpenAI 生成视频模型 Sora 论文翻译

系列文章目录 前言 视频生成模型作为世界模拟器 本技术报告的重点是 (1) 将所有类型的视觉数据转换为统一表示&#xff0c;以便对生成模型进行大规模训练的方法&#xff0c;以及 (2) 对索拉的能力和局限性的定性评估。 该报告不包括模型和实现细节。 许多先前的工作使用各种方…...

2.13日学习打卡----初学RocketMQ(四)

2.13日学习打卡 目录&#xff1a; 2.13日学习打卡一.RocketMQ之Java ClassDefaultMQProducer类DefaultMQPushConsumer类Message类MessageExt类 二.RocketMQ 消费幂消费过程幂等消费速度慢的处理方式 三.RocketMQ 集群服务集群特点单master模式多master模式多master多Slave模式-…...

ZigBee学习——BDB

✨本博客参考了善学坊的教程&#xff0c;并总结了在实现过程中遇到的问题。 善学坊官网 文章目录 一、BDB简介二、BDB Commissioning Modes2.1 Network Steering2.2 Network Formation2.3 Finding and Binding&#xff08;F & B&#xff09;2.4 Touchlink 三、BDB Commissi…...

使用Docker快速部署MySQL

部署MySQL 使用Docker安装&#xff0c;仅仅需要一步即可&#xff0c;在命令行输入下面的命令 docker run -d \--name mysql \-p 3306:3306 \-e TZAsia/Shanghai \-e MYSQL_ROOT_PASSWORD123456 \mysql MySQL安装完毕&#xff01;通过任意客户端工具即可连接到MySQL. 当我们执…...

力扣热题100_滑动窗口_3_无重复字符的最长子串

文章目录 题目链接解题思路解题代码 题目链接 3. 无重复字符的最长子串 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”&#xff0c;所以其长度为 3。 示…...

RM电控工程讲义

HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan) 是一个回调函数&#xff0c;通常在STM32的HAL库中用于处理CAN&#xff08;Controller Area Network&#xff09;接收FIFO 0中的消息。当CAN接口在FIFO 0中有待处理的消息时&#xff0c;这个函数会被调用。 HAL库C…...

论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE

目录 人体姿态识别概述 论文框架 HPE分类 人体建模模型 二维单人姿态估计 回归方法 目前发展 优化 基于热图的方法 基于CNN的几个网络 利用身体结构信息提供构建HPE网络 视频序列中的人体姿态估计 2D多人姿态识别 方法 自上而下 自下而上 2D HPE 总结 数据集…...

C语言——oj刷题——杨氏矩阵

目录 1. 理解杨氏矩形的特点 2. 实现杨氏矩形查找算法 3. 编写示例代码 当我们谈到杨氏矩形时&#xff0c;我们指的是一种在二维数组中查找目标元素的高效算法。它是由杨氏&#xff08;Yan Shi&#xff09;教授提出的&#xff0c;因此得名为杨氏矩形。 杨氏矩形问题的场景是…...

C++ 50道面试题

1. static关键字 1.全局static变量 存储位置&#xff1a;静态存储区&#xff0c;在程序运行期间一直存在 初始化&#xff1a; 未手动初始化的变量自动初始化为0 作用域&#xff1a; 从定义之处开始&#xff0c;到文件结束&#xff0c;仅能在本文件中使用 2.局部static变量…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

flow_controllers

关键点&#xff1a; 流控制器类型&#xff1a; 同步&#xff08;Sync&#xff09;&#xff1a;发布操作会阻塞&#xff0c;直到数据被确认发送。异步&#xff08;Async&#xff09;&#xff1a;发布操作非阻塞&#xff0c;数据发送由后台线程处理。纯同步&#xff08;PureSync…...