当前位置: 首页 > news >正文

Elasticsearch:混合搜索是 GenAI 应用的未来

在这个竞争激烈的人工智能时代,自动化和数据为王。 从庞大的存储库中有效地自动化搜索和检索信息的过程的能力变得至关重要。 随着技术的进步,信息检索方法也在不断进步,从而导致了各种搜索机制的发展。 随着生成式人工智能模型成为吸引力的中心,应用程序需要可靠的搜索和检索技术。 其中,如果说旧的全文搜索具有信任因素,那么向量搜索则正在成为先进的搜索技术。

今天,我们将探索全文搜索和向量搜索,并了解如何在当今的数字环境中使用它们。

什么是全文检索?

全文搜索是一种在大量文本数据中查找特定信息的强大技术。 与仅查找精确匹配的简单关键字搜索不同,全文搜索会分析文档的整个文本并了解查询的上下文。 这使得它能够找到相关结果,即使查询不使用你搜索的确切关键字。

这是它的工作原理

  • 索引。 当你将文本数据添加到支持全文搜索的系统时,系统首先创建索引。 该索引就像文本的详细地图,列出了它包含的所有单词和短语以及它们出现的位置。
  • 查询。 执行全文搜索时,你输入包含关键字或短语的查询。 然后,系统在索引中搜索包含全部或部分查询词的文档。
  • 排名。 根据所使用的特定算法,系统将根据结果与你的查询的相关性对结果进行排名。 影响排名的因素包括文档中查询词的频率和接近度,以及文档的整体重要性或发布日期等其他因素。

在 Elasticsearch 中,我们很容易针对数据进行全文搜索,比如:

GET twitter/_search"match": {"city": "上海"}}
}

更多关于全文搜索的知识,我们可以参考文章 “开始使用 Elasticsearch (2)”。

什么是向量搜索?

向量搜索是大多数生成式人工智能应用最迫切的需求。 它通过理解机器和人类语言来检索上下文相关的信息,理解用户想要回报他/她的查询的含义。 这种方法需求量很大,并受到生成人工智能行业专家和组织的高度赞扬。 向量数据库使用这种方法为用户查询检索语义上正确的信息。

例如,用户在检索信息时不需要知道确切的单词 —— 即使他们知道一些相似的单词,向量搜索也可以检索到接近准确的结果。 在信息搜索需要人性化的地方(例如电子商务应用程序),这尤其有用。

通过更紧密地与人类的思维和沟通方式保持一致,它为用户和人工智能系统之间更自然、更高效的交互开辟了新的可能性。 随着这项技术的不断发展,其影响力预计将不断扩大,进一步巩固其作为生成人工智能行业现代信息检索策略基石的作用。

向量搜索拥有令人印象深刻的功能:

  • 语义理解: 同义词、短语甚至隐含含义都不再是个谜。
  • 关键词的相关性: 查找与你的意图真正相关的信息,而不仅仅是关键字填充的页面。
  • 个性化:了解你的喜好并推荐你真正喜欢的东西。

但与其他事物一样,向量搜索也有其独特的不好的特点。 训练模型和计算这些奇特的向量可能会耗费大量的计算资源。 虽然它擅长理解含义,但有时你只需要精确的关键字搜索即可。

向量搜索的工作原理

以下是向量搜索工作原理的简化说明:

  • 数据转换:使用文本的词嵌入或图像的卷积神经网络等模型将每个项目(如文本文档或图像)转换为向量。 这些模型旨在捕获内容的语义或视觉本质。

  • 索引:然后,这些向量会在数据库中建立索引(例如 Elasticsearch),Elasticsearch 专为高效、高维向量搜索而设计。 这种索引通常涉及以相似的项目在向量空间中更接近的方式组织向量。

  • 查询处理:当收到搜索查询时,它也会使用与数据所用的相同模型转换为向量。

  • 向量比较:搜索涉及将查询向量与索引中的向量进行比较。 这通常是使用余弦相似度或欧几里得距离等相似度度量来完成的。 这个想法是找到最接近查询向量的向量

如果你想了解更多关于向量搜索的知识,请详细观看视频:

Elasticsearch Relevance Engine

全文搜索与向量搜索:谁赢了?

虽然全文搜索在精度和速度方面表现出色,而向量搜索解锁了语义理解,但混合方法成为真正的冠军。 想象一下,一个搜索不仅可以理解你的精确关键字(例如“red shoes”),而且还可以找到你未提及的那些舒适的 crimson sneakers。 即使你不使用完美的措辞,这种组合也能提供高度相关的结果。 可以将其视为两全其美:准确性与偶然性相结合,确保你永远不会因为未准确拼写而错过隐藏的宝石。 从本质上讲,混合搜索超越了限制 —— 突破了信息检索的界限,提供了既精确又令人惊喜的体验。

Elasticsearch 在全文搜索积累了深厚的搜索基础,加上在最新的发布中的向量搜索技术,从而使其成为理想的混合搜索工具。这个和一些在世面上的纯向量搜索有无可替代的优势。

混合搜索

在信息检索领域,出现了一股新力量:混合搜索。Elasticsearch 处于领先地位,使开发人员能够开发丰富的人工智能和分析应用程序,利用向量搜索和全文搜索的综合优势。

在构建人工智能应用程序时,这对你意味着什么? 你不再被迫在机器人的精确性和细致入微的理解之间做出选择。 Elasticsearch 弥合了这一鸿沟,使你能够释放搜索的全部潜力并提供真正有意义的体验。

Elasticsearch 通过索引向量搜索加速信息检索。 这一改变游戏规则的功能无缝地融合了闪电般快速的向量搜索、精确的全文搜索和尖端的索引技术 —— 所有这些都由近似最近邻 (ANN) 搜索提供支持。 准备好在浩瀚的数据海洋中体验 100-1,000 倍的更快搜索速度和准确性。

倒数排序融合 - Reciprocal rank fusion

由于全文搜索及向量搜索是使用不同的算法进行打分的,这就造成把两个不同搜索结果综合起来统一排名的困难。向量搜索的分数处于 0-1.0 之间,而全文搜索的结果排名分数可能是高于10或者更大的值。我们需要一种方法把两种搜索方法的结果进行综合处理,并得出一个唯一的排名。

倒数排序融合(RRF)是一种将具有不同相关性指标的多个结果集组合成单个结果集的方法。 RRF 无需调优,不同的相关性指标也不必相互关联即可获得高质量的结果。该方法的优势在于不利用相关分数,而仅靠排名计算。相关分数存在的问题在于不同模型的分数范围差。

具体 RRF 是如何工作的,请详细阅读文章 “Elasticsearch:倒数排序融合 - Reciprocal rank fusion (RRF)”。

更为重要的是:Elasticsearch 目前支持第三方的密集向量搜索,全文搜索(基于 BM25 打分)及稀疏向量搜索(ELSER)。我们可以通过 RRF 来针对所有的搜索方法进行混合搜索,无论是多种搜索方法在一起进行搜索:

有关 Elasticsearch 向量搜索及混合评分的更多阅读,请参考 “NLP - 自然语言处理及向量搜索”。

更多阅读:

  • 使用 Elastic Learned Sparse Encoder 和混合评分的卓越相关性

  • 改进 Elastic Stack 中的信息检索:混合检索 - hybrid retrieval

  • 通过 Elasticsearch 和 Go 使用混合搜索进行地鼠狩猎

  • Elasticsearch:结合两全其美:Elasticsearch 与 BM25 和 HNSW 的混合搜索

  • Elastic Search 8.9:与 RRF 的混合搜索、更快的向量搜索和面向公众的搜索端点

  • Elasticsearch:Search tutorial - 使用 Python 进行搜索 (一)(二)(三)(四)

  • Elasticsearch:语义搜索快速入门

相关文章:

Elasticsearch:混合搜索是 GenAI 应用的未来

在这个竞争激烈的人工智能时代,自动化和数据为王。 从庞大的存储库中有效地自动化搜索和检索信息的过程的能力变得至关重要。 随着技术的进步,信息检索方法也在不断进步,从而导致了各种搜索机制的发展。 随着生成式人工智能模型成为吸引力的中…...

态、势、感、知的偏序、全序与无序

在态势感知中,"态"、"势"、"感"和"知"可以被理解为描述不同层次的概念。而在偏序、全序和无序方面,它们可以有不同的关系,简单地说,偏序关系表示部分的可比较性,全序关系表示…...

【从Python基础到深度学习】 8. VIM两种状态

一、安装 sudo apt install vim 二、VIM两种模式 - 命令状态/编辑状态 1.1 进入/退出VIM 进入VIM vim 退出vim :q <enter> 2.2 根目录下添加配置文件 window下创建vimrc类型文件内容如下&#xff1a; set nu set cursorline set hlsearch set tabstop4 使用Wins…...

java微服务面试篇

目录 目录 SpringCloud Spring Cloud 的5大组件 服务注册 Eureka Nacos Eureka和Nacos的对比 负载均衡 负载均衡流程 Ribbon负载均衡策略 自定义负载均衡策略 熔断、降级 服务雪崩 服务降级 服务熔断 服务监控 为什么需要监控 服务监控的组件 skywalking 业务…...

OpenAI 生成视频模型 Sora 论文翻译

系列文章目录 前言 视频生成模型作为世界模拟器 本技术报告的重点是 (1) 将所有类型的视觉数据转换为统一表示&#xff0c;以便对生成模型进行大规模训练的方法&#xff0c;以及 (2) 对索拉的能力和局限性的定性评估。 该报告不包括模型和实现细节。 许多先前的工作使用各种方…...

2.13日学习打卡----初学RocketMQ(四)

2.13日学习打卡 目录&#xff1a; 2.13日学习打卡一.RocketMQ之Java ClassDefaultMQProducer类DefaultMQPushConsumer类Message类MessageExt类 二.RocketMQ 消费幂消费过程幂等消费速度慢的处理方式 三.RocketMQ 集群服务集群特点单master模式多master模式多master多Slave模式-…...

ZigBee学习——BDB

✨本博客参考了善学坊的教程&#xff0c;并总结了在实现过程中遇到的问题。 善学坊官网 文章目录 一、BDB简介二、BDB Commissioning Modes2.1 Network Steering2.2 Network Formation2.3 Finding and Binding&#xff08;F & B&#xff09;2.4 Touchlink 三、BDB Commissi…...

使用Docker快速部署MySQL

部署MySQL 使用Docker安装&#xff0c;仅仅需要一步即可&#xff0c;在命令行输入下面的命令 docker run -d \--name mysql \-p 3306:3306 \-e TZAsia/Shanghai \-e MYSQL_ROOT_PASSWORD123456 \mysql MySQL安装完毕&#xff01;通过任意客户端工具即可连接到MySQL. 当我们执…...

力扣热题100_滑动窗口_3_无重复字符的最长子串

文章目录 题目链接解题思路解题代码 题目链接 3. 无重复字符的最长子串 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”&#xff0c;所以其长度为 3。 示…...

RM电控工程讲义

HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan) 是一个回调函数&#xff0c;通常在STM32的HAL库中用于处理CAN&#xff08;Controller Area Network&#xff09;接收FIFO 0中的消息。当CAN接口在FIFO 0中有待处理的消息时&#xff0c;这个函数会被调用。 HAL库C…...

论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE

目录 人体姿态识别概述 论文框架 HPE分类 人体建模模型 二维单人姿态估计 回归方法 目前发展 优化 基于热图的方法 基于CNN的几个网络 利用身体结构信息提供构建HPE网络 视频序列中的人体姿态估计 2D多人姿态识别 方法 自上而下 自下而上 2D HPE 总结 数据集…...

C语言——oj刷题——杨氏矩阵

目录 1. 理解杨氏矩形的特点 2. 实现杨氏矩形查找算法 3. 编写示例代码 当我们谈到杨氏矩形时&#xff0c;我们指的是一种在二维数组中查找目标元素的高效算法。它是由杨氏&#xff08;Yan Shi&#xff09;教授提出的&#xff0c;因此得名为杨氏矩形。 杨氏矩形问题的场景是…...

C++ 50道面试题

1. static关键字 1.全局static变量 存储位置&#xff1a;静态存储区&#xff0c;在程序运行期间一直存在 初始化&#xff1a; 未手动初始化的变量自动初始化为0 作用域&#xff1a; 从定义之处开始&#xff0c;到文件结束&#xff0c;仅能在本文件中使用 2.局部static变量…...

寒假学习记录14:JS字符串

目录 查找字符串中的特定元素 String.indexOf() &#xff08;返回索引值&#xff09; 截取字符串的一部分 .substring() &#xff08;不影响原数组&#xff09;&#xff08;不允许负值&#xff09; 截取字符串的一部分 .slice() &#xff08;不影响原数…...

【数学建模】【2024年】【第40届】【MCM/ICM】【C题 网球运动中的“动量”】【解题思路】

一、题目 &#xff08;一&#xff09; 赛题原文 2024 MCM Problem C: Momentum in Tennis In the 2023 Wimbledon Gentlemen’s final, 20-year-old Spanish rising star Carlos Alcaraz defeated 36-year-old Novak Djokovic. The loss was Djokovic’s first at Wimbledon…...

无人驾驶LQR控制算法 c++ 实现

参考博客&#xff1a; &#xff08;1&#xff09;LQR的理解与运用 第一期——理解篇 &#xff08;2&#xff09;线性二次型调节器(LQR)原理详解 &#xff08;3&#xff09;LQR控制基本原理&#xff08;包括Riccati方程具体推导过程&#xff09; &#xff08;4&#xff09;【基础…...

Karnaugh map (卡诺图)

【Leetcode】 289. Game of Life According to Wikipedia’s article: “The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970.” The board is made up of an m x n grid of cells, wh…...

C# CAD 框选pdf输出

在C#中进行AutoCAD二次开发时&#xff0c;实现框选&#xff08;窗口选择&#xff09;实体并输出这些实体到PDF文件通常涉及以下步骤&#xff1a; public ObjectIdCollection GetSelectedEntities() {using (var acTrans HostApplicationServices.WorkingDatabase.Transaction…...

【Linux】 Linux 小项目—— 进度条

进度条 基础知识1 \r && \n2 行缓冲区3 函数介绍 进度条实现版本 1代码实现运行效果 版本2 Thanks♪(&#xff65;ω&#xff65;)&#xff89;谢谢阅读&#xff01;&#xff01;&#xff01;下一篇文章见&#xff01;&#xff01;&#xff01; 基础知识 1 \r &&a…...

Sora和Pika,RunwayMl,Stable Video对比!网友:Sora真王者,其他都是弟

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…...

Go内存优化与垃圾收集

Go提供了自动化的内存管理机制&#xff0c;但在某些情况下需要更精细的微调从而避免发生OOM错误。本文介绍了如何通过微调GOGC和GOMEMLIMIT在性能和内存效率之间取得平衡&#xff0c;并尽量避免OOM的产生。原文: Memory Optimization and Garbage Collector Management in Go 本…...

【Spring】Bean 的生命周期

一、Bean 的生命周期 Spring 其实就是一个管理 Bean 对象的工厂&#xff0c;它负责对象的创建&#xff0c;对象的销毁等 所谓的生命周期就是&#xff1a;对象从创建开始到最终销毁的整个过程 什么时候创建 Bean 对象&#xff1f;创建 Bean 对象的前后会调用什么方法&#xf…...

云计算基础-存储基础

存储概念 什么是存储&#xff1a; 存储就是根据不同的应用程序环境&#xff0c;通过采取合理、安全、有效的方式将数据保存到某些介质上&#xff0c;并能保证有效的访问&#xff0c;存储的本质是记录信息的载体。 存储的特性&#xff1a; 数据临时或长期驻留的物理介质需要保…...

问题:人的安全知识和技能是天生的。() #媒体#知识分享#学习方法

问题&#xff1a;人的安全知识和技能是天生的。&#xff08;) 人的安全知识和技能是天生的。() 参考答案如图所示 问题&#xff1a;&#xff08;&#xff09;是党和国家的根本所在、命脉所在&#xff0c;是全国各族人民的利益所在、幸福所在。 A.人民当家作主 B.坚持和完善…...

【数据分享】2001~2020年青藏高原植被净初级生产力数据集

各位同学们好&#xff0c;今天和大伙儿分享的是2001~2020年青藏高原植被净初级生产力数据集。如果大家有下载处理数据等方面的问题&#xff0c;您可以私信或评论。 朱军涛. (2022). 青藏高原植被净初级生产力数据集&#xff08;2001-2020&#xff09;. 国家青藏高原数据中心. …...

【Spring MVC篇】返回响应

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【Spring MVC】 本专栏旨在分享学习Spring MVC的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 一、返回静态页面…...

阿里云BGP多线精品EIP香港CN2线路低时延,价格贵

阿里云香港等地域服务器的网络线路类型可以选择BGP&#xff08;多线&#xff09;和 BGP&#xff08;多线&#xff09;精品&#xff0c;普通的BGP多线和精品有什么区别&#xff1f;BGP&#xff08;多线&#xff09;适用于香港本地、香港和海外之间的互联网访问。使用BGP&#xf…...

(08)Hive——Join连接、谓词下推

前言 Hive-3.1.2版本支持6种join语法。分别是&#xff1a;inner join&#xff08;内连接&#xff09;、left join&#xff08;左连接&#xff09;、right join&#xff08;右连接&#xff09;、full outer join&#xff08;全外连接&#xff09;、left semi join&#xff08;左…...

创新技巧|迁移到 Google Analytics 4 时如何保存历史 Universal Analytics 数据

Google Universal Analytics 从 2023 年 7 月起停止收集数据&#xff08;除了付费 GA360 之外&#xff09;。它被Google Analytics 4取代。为此&#xff0c;不少用户疑惑&#xff1a;是否可以将累积&#xff08;历史&#xff09;数据从 Google Analytics Universal 传输到 Goog…...

一个小而实用的 Python 包 pangu,实现在中文和半宽字符(字母、数字和符号)之间自动插入空格

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一个小巧的库&#xff0c;可以避免自己重新开发功能。利用 Python 包 pangu&#xff0c;可以轻松实现在 CJK&#xff08;中文、日文、韩文&#xff09;和半宽字符&#xff08;字母、数字和符号&#xf…...