(12)Hive调优——count distinct去重优化
离线数仓开发过程中经常会对数据去重后聚合统计,count distinct使得map端无法预聚合,容易引发reduce端长尾,以下是count distinct去重调优的几种方式。
解决方案一:group by 替代
原sql 如下:
#=====7日、14日的app点击的用户数(user_id去重统计)
selectgroup_id,app_id,
-- 7日内UVcount(distinct case when dt >= '${7d_before}' then user_id else null end) as 7d_uv,
--14日内UVcount(distinct case when dt >= '${14d_before}' then user_id else null end) as 14d_uv
from tbl
where dt >= '${14d_before}'
group by group_id, --渠道app_id; --app
优化思路:group by两阶段聚合
#=====7日、14日的app点击的用户数(user_id去重统计)
selectgroup_id,app_id,
-- 7日内UVsum(case when 7d_cnt > 0 then 1 else 0 end) as 7d_uv,
--14日内UVsum(case when 14d_uv > 0 then 1 else 0 end) as 14d_uvfrom (selectgroup_id,app_id,-- 7日内各渠道各app下的每个用户的点击量count(case when dt >= '${7d_before}' then user_id else null end) as 7d_cnt,-- 14日内各渠道各app下的每个用户点击量count(case when dt >= '${14d_before}' then user_id else null end) as 14d_uvfrom tblwhere dt >= '${14d_before}'group by group_id,app_id,user_id) tmp1
group by group_id,app_id;
方案一弊端:数据倾斜风险
解决方案一通过两阶段group by(分组聚合) 对count (distinct) 进行改造调优,需要注意的是:如果分组字段user_id在tbl 表中存在大量的重复值,group by底层走shuffle,会有数据倾斜的风险,因此方案一还可以进一步优化。
解决方案二:group by调优
1)添加随机数,两阶段聚合(推荐)
#===============优化前
insert overwrite table tblB partition (dt = '2022-10-19')
selectcookie_id,event_query,count(*) as cnt
from tblA
where dt >= '20220718'and dt <= '20221019'and event_query is not null
group by cookie_id, event_query#===============优化后
insert overwrite table tblB partition (dt = '2022-10-19')
selectsplit(tkey, '_')[1] as cookie_id,event_query,#--- 求出最终的聚合值sum(cnt) as cnt
from (selectconcat_ws('_', cast(ceiling(rand() * 99) as string), cookie_id) as tkey,event_query,#---将热点Key值:cookie_id 进行打散后,先局部聚合得到cntcount(*) as cntfrom tblAwhere dt >= '20220718'and dt <= '20221019'and event_query is not null#--- 第一阶段:添加[0-99]随机整数,将热点Key值:cookie_id 进行打散( M -->R)group by concat_ws('_', cast(ceiling(rand() * 99) as string), cookie_id),event_query) temp#--- 第二阶段:对拼接的key值进行切分,还原原本的key值split(tkey, '_')[1] =cookie_id ( R -->R)
group by split(tkey, '_')[1], event_que
优化思路为:
- 第一阶段:对需要聚合的Key值添加随机后缀进行打散,基于加工后的key值进行初步聚合(M-->R1)
- 第二阶段:对加工后的key值进行切分还原,对第一阶段的聚合值进行再次聚合,求出最终结果值(R1-->R2)
2)开启Map端聚合
#--开启Map端聚合,默认为true
set hive.map.aggr = true;
#--在Map 端预先聚合操作的条数
set hive.groupby.mapaggr.checkinterval = 100000;
该参数可以将顶层的聚合操作放在 Map 阶段执行,从而减轻shuffle清洗阶段的数据传输和 Reduce阶段的执行时间,提升总体性能。
3)数据倾斜时自动负载均衡
#---有数据倾斜的时候自动负载均衡(默认是 false)
set hive.groupby.skewindata = true;
开启该参数后,当前程序会自动通过两个MapReduce来运行,将M->R阶段 拆解成 M->R->R阶段
- 第一个MapReduce自动进行随机分布到Reducer中(负载均衡),每个Reducer做部分聚合操作,输出结果
- 第二个MapReduce将上一步聚合的结果再按照业务(group by key)进行处理,保障相同的key分发到同一个reduce做最终聚合。
相关文章:
(12)Hive调优——count distinct去重优化
离线数仓开发过程中经常会对数据去重后聚合统计,count distinct使得map端无法预聚合,容易引发reduce端长尾,以下是count distinct去重调优的几种方式。 解决方案一:group by 替代 原sql 如下: #7日、14日的app点击的…...
记录 | 验证pytorch-cuda是否安装成功
检测程序如下: import torchprint(torch.__version__) print(torch.cuda.is_available()) 或者用终端 Shell,运行情况如下...
LeetCode 239.滑动窗口的最大值 Hot100 单调栈
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1: 输入:nums [1,3,-1,-3,5,3,6,7], k 3 输…...
463. Island Perimeter(岛屿的周长)
问题描述 给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] 1 表示陆地, grid[i][j] 0 表示水域。 网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有…...
如何解决缓存和数据库的数据不一致问题
数据不一致问题是操作数据库和操作缓存值的过程中,其中一个操作失败的情况。实际上,即使这两个操作第一次执行时都没有失败,当有大量并发请求时,应用还是有可能读到不一致的数据。 如何更新缓存 更新缓存的步骤就两步࿰…...
linux系统下vscode portable版本的python环境搭建003:venv
这里写自定义目录标题 python安装方案一. 使用源码安装(有[构建工具](https://blog.csdn.net/ResumeProject/article/details/136095629)的情况下)方案二.使用系统包管理器 虚拟环境安装TESTCG 本文目的:希望在获得一个新的系统之后ÿ…...
使用TinyXML-2解析XML文件
一、XML介绍 当我们想要在不同的程序、系统或平台之间共享信息时,就需要一种统一的方式来组织和表示数据。XML(EXtensible Markup Language,即可扩展标记语言)是一种用于描述数据的标记语言,它让数据以一种结构化的方…...
Linux:docker在线仓库(docker hub 阿里云)基础操作
把镜像放到公网仓库,这样可以方便大家一起使用,当需要时直接在网上拉取镜像,并且你可以随时管理自己的镜像——删除添加或者修改。 1.docker hub仓库 2.阿里云加速 3.阿里云仓库 由于docker hub是国外的网站,国内的对数据的把控…...
C语言程序设计(第四版)—习题7程序设计题
目录 1.选择法排序。 2.求一批整数中出现最多的数字。 3.判断上三角矩阵。 4.求矩阵各行元素之和。 5.求鞍点。 6.统计大写辅音字母。 7.字符串替换。 8.字符串转换成十进制整数。 1.选择法排序。 输入一个正整数n(1<n≤10)…...
ZCC6982-同步升压充双节锂电池充电芯片
特性 ■高达 2A 的可调充电电流(受实际散热和输入功率限制) ■支持 8.4V、8.6V、8.7V、8.8V 的充满电压(限QFN) ■高达 28V 的输入耐压保护 ■高达 28V 的电池端耐压保护 ■宽输入工作电压范围:3.0V~6.5V ■峰值…...
定时器(基本定时器、通用定时器、高级定时器)
目录 一、基本定时器 二、通用定时器 三、高级定时器 一、基本定时器 1、作用:计时和计数。 二、通用定时器 1、除了有基本定时器的计时和计数功能外,主要有输入捕获和输出比较的功能,硬件主要由六大部分组成: ① 时钟源 ② 控…...
009集——磁盘详解——电脑数据如何存储在磁盘
很多人也知道数据能够保存是由于设备中有一个叫做「硬盘」的组件存在,但也有很多人不知道硬盘是怎样储存这些数据的。这里给大家讲讲其中的原理。 首先我们要明白的是,计算机中只有0和1,那么我们存入硬盘的数据,实际上也就是一堆0…...
鸿蒙开发-HarmonyOS UI架构
初步布局Index 当我们新建一个工程之后,首先会进入Index页。我们先简单的做一个文章列表的显示 class Article {title?: stringdesc?: stringlink?: string }Entry Component struct Index {State articles: Article[] []build() {Row() {Scroll() {Column() …...
Flutter 动画(显式动画、隐式动画、Hero动画、页面转场动画、交错动画)
前言 当前案例 Flutter SDK版本:3.13.2 显式动画 Tween({this.begin,this.end}) 两个构造参数,分别是 开始值 和 结束值,根据这两个值,提供了控制动画的方法,以下是常用的; controller.forward() : 向前…...
用HTML5 Canvas创造视觉盛宴——动态彩色线条效果
目录 一、程序代码 二、代码原理 三、运行效果 一、程序代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!-- 声明文档类型为XHTML 1.0 Transitional -…...
云原生介绍与容器的基本概念
云原生介绍 1、云原生的定义 云原生为用户指定了一条低心智负担的、敏捷的、能够以可扩展、可复制的方式最大化地利用云的能力、发挥云的价值的最佳路径。 2、云原生思想两个理论 第一个理论基础是:不可变基础设施。 第二个理论基础是:云应用编排理…...
Flash存储
目录 一、MCU读写擦除Flash步骤 1、写flash步骤: 2、读flash步骤: 3、擦除flash步骤: 4、要注意的地方: 一、MCU读写擦除Flash步骤 1、写flash步骤: (1)解锁 2、读flash步骤: 3、擦除flash步骤&#x…...
Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ
完全背包 题目 文章讲解 视频讲解 完全背包和0-1背包的区别在于:物品是否可以重复使用 思路:对于完全背包问题,内层循环的遍历方式应该是从weight[i]开始一直遍历到V,而不是从V到weight[i]。这样可以确保每种物品可以被选择多次…...
使用PaddleNLP UIE模型提取上市公司PDF公告关键信息
项目地址:使用PaddleNLP UIE模型抽取PDF版上市公司公告 - 飞桨AI Studio星河社区 (baidu.com) 背景介绍 本项目将演示如何通过PDFPlumber库和PaddleNLP UIE模型,抽取公告中的相关信息。本次任务的PDF内容是破产清算的相关公告,目标是获取受理…...
软件工程师,OpenAI Sora驾到,快来围观
概述 近期,OpenAI在其官方网站上公布了Sora文生视频模型的详细信息,展示了其令人印象深刻的能力,包括根据文本输入快速生成长达一分钟的高清视频。Sora的强大之处在于其能够根据文本描述,生成长达60秒的视频,其中包含&…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
