XLNet做文本分类
import torch
from transformers import XLNetTokenizer, XLNetForSequenceClassification
from torch.utils.data import DataLoader, TensorDataset
# 示例文本数据
texts = ["This is a positive example.", "This is a negative example.", "Another positive example."]
# 示例标签
labels = [1, 0, 1] # 1表示正例,0表示负例
# 加载XLNet模型和分词器
model_name = "xlnet-base-cased"
tokenizer = XLNetTokenizer.from_pretrained(model_name)
model = XLNetForSequenceClassification.from_pretrained(model_name)
# 分词并编码文本
tokenized_texts = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# 将标签转换为PyTorch张量
labels = torch.tensor(labels)
# 创建数据集
dataset = TensorDataset(tokenized_texts['input_ids'], tokenized_texts['attention_mask'], labels)
# 创建数据加载器
batch_size = 2
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 设置训练设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 定义优化器和损失函数
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
criterion = torch.nn.CrossEntropyLoss()
# 训练模型
epochs = 3
for epoch in range(epochs):
for input_ids, attention_mask, labels in dataloader:
input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
# 测试模型
model.eval()
with torch.no_grad():
test_texts = ["This is a test sentence.", "Another test sentence."]
tokenized_test_texts = tokenizer(test_texts, padding=True, truncation=True, return_tensors='pt')
input_ids = tokenized_test_texts['input_ids'].to(device)
attention_mask = tokenized_test_texts['attention_mask'].to(device)
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits
predictions = torch.argmax(logits, dim=1)
print("Predictions:", predictions.tolist())
import torch
from transformers import XLNetTokenizer, XLNetForSequenceClassification
from torch.utils.data import DataLoader, TensorDataset# 示例文本数据
texts = ["This is a positive example.", "This is a negative example.", "Another positive example."]# 示例标签
labels = [1, 0, 1] # 1表示正例,0表示负例# 加载XLNet模型和分词器
model_name = "xlnet-base-cased"
tokenizer = XLNetTokenizer.from_pretrained(model_name)
model = XLNetForSequenceClassification.from_pretrained(model_name)# 分词并编码文本
tokenized_texts = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')# 将标签转换为PyTorch张量
labels = torch.tensor(labels)# 创建数据集
dataset = TensorDataset(tokenized_texts['input_ids'], tokenized_texts['attention_mask'], labels)# 创建数据加载器
batch_size = 2
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)# 设置训练设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 定义优化器和损失函数
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
criterion = torch.nn.CrossEntropyLoss()# 训练模型
epochs = 3
for epoch in range(epochs):for input_ids, attention_mask, labels in dataloader:input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)optimizer.zero_grad()outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs.lossloss.backward()optimizer.step()# 测试模型
model.eval()
with torch.no_grad():test_texts = ["This is a test sentence.", "Another test sentence."]tokenized_test_texts = tokenizer(test_texts, padding=True, truncation=True, return_tensors='pt')input_ids = tokenized_test_texts['input_ids'].to(device)attention_mask = tokenized_test_texts['attention_mask'].to(device)outputs = model(input_ids, attention_mask=attention_mask)logits = outputs.logitspredictions = torch.argmax(logits, dim=1)print("Predictions:", predictions.tolist())
相关文章:
XLNet做文本分类
import torch from transformers import XLNetTokenizer, XLNetForSequenceClassification from torch.utils.data import DataLoader, TensorDataset # 示例文本数据 texts ["This is a positive example.", "This is a negative example.", "Anot…...
Swift 5.9 新 @Observable 对象在 SwiftUI 使用中的陷阱与解决
概览 在 Swift 5.9 中,苹果为我们带来了全新的可观察框架 Observation,它是观察者开发模式在 Swift 中的一个全新实现。 除了自身本领过硬以外,Observation 框架和 SwiftUI 搭配起来也能相得益彰,事倍功半。不过 Observable 对象…...
分享一个学英语的网站
名字叫:公益大米网 Freerice 这个网站是以做题的形式来记忆单词,题干是一个单词,给出4个选项,需要选出其中最接近题干单词的选项。 答对可以获得10粒大米,网站的创办者负责捐赠。如图 触发某些条件&a…...
【动态规划】【C++算法】2742. 给墙壁刷油漆
作者推荐 【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字 本文涉及知识点 动态规划汇总 LeetCode2742. 给墙壁刷油漆 给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time ,分别表示给 n 堵不同的墙刷油漆需要的开销和时间。你有…...
【后端高频面试题--设计模式上篇】
🚀 作者 :“码上有前” 🚀 文章简介 :后端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 往期精彩内容 【后端高频面试题–设计模式上篇】 【后端高频面试题–设计模式下篇】 【后端高频…...
P3141 [USACO16FEB] Fenced In P题解
题目 如果此题数据要小一点,那么我们可以用克鲁斯卡尔算法通过,但是这个数据太大了,空间会爆炸,时间也会爆炸。 我们发现,如果用 MST 做,那么很多边的边权都一样,我们可以整行整列地删除。 我…...
Android Compose 一个音视频APP——Magic Music Player
Magic Music APP Magic Music APP Magic Music APP概述效果预览-视频资源功能预览Library歌曲播放效果预览歌曲播放依赖注入设置播放源播放进度上一首&下一首UI响应 歌词歌词解析解析成行逐行解析 视频播放AndroidView引入Exoplayer自定义Exoplayer样式横竖屏切换 歌曲多任…...
Nginx实战:安装搭建
目录 前言 一、yum安装 二、编译安装 1.下载安装包 2.解压 3.生成makefile文件 4.编译 5.安装执行 6.执行命令软连接 7.Nginx命令 前言 nginx的安装有两种方式: 1、yum安装:安装快速,但是无法在安装的时候带上想要的第三方包 2、…...
Qt之条件变量QWaitCondition详解(从使用到原理分析全)
QWaitCondition内部实现结构图: 相关系列文章 C之Pimpl惯用法 目录 1.简介 2.示例 2.1.全局配置 2.2.生产者Producer 2.3.消费者Consumer 2.4.测试例子 3.原理分析 3.1.源码介绍 3.2.辅助函数CreateEvent 3.3.辅助函数WaitForSingleObject 3.4.QWaitCo…...
OpenSource - 一站式自动化运维及自动化部署平台
文章目录 orion-ops 是什么重构特性快速开始技术栈功能预览添砖加瓦License orion-ops 是什么 orion-ops 一站式自动化运维及自动化部署平台, 使用多环境的概念, 提供了机器管理、机器监控报警、Web终端、WebSftp、机器批量执行、机器批量上传、在线查看日志、定时调度任务、应…...
【后端高频面试题--设计模式下篇】
🚀 作者 :“码上有前” 🚀 文章简介 :后端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 后端高频面试题--设计模式下篇 往期精彩内容设计模式总览模板方法模式怎么理解模板方法模式模板方…...
这才是大学生该做的副业,别再痴迷于游戏了!
感谢大家一直以来的支持和关注,尤其是在我的上一个公众号被关闭后,仍然选择跟随我的老粉丝们,你们的支持是我继续前行的动力。为了回馈大家长期以来的陪伴,我决定分享一些实用的干货,这些都是我亲身实践并且取得成功的…...
Ubuntu20.04 安装jekyll
首先使根据官方文档安装:Jekyll on Ubuntu | Jekyll • Simple, blog-aware, static sites 如果没有报错,就不用再继续看下去了。 我这边在执行gem install jekyll bundler时报错,所以安装了rvm,安装rvm可以参考这篇文章Ubuntu …...
AWK语言
一. awk awk:报告生成器,格式化输出。 在 Linux/UNIX 系统中,awk 是一个功能强大的编辑工具,逐行读取输入文本,默认以空格或tab键作为分隔符作为分隔,并按模式或者条件执行编辑命令。而awk比较倾向于将一行…...
精通Nmap:网络扫描与安全的终极武器
一、引言 Nmap,即NetworkMapper,是一款开源的网络探测和安全审计工具。它能帮助您发现网络中的设备,并识别潜在的安全风险。在这个教程中,我们将一步步引导您如何有效地使用Nmap,让您的网络更加安全。 因为Nmap还有图…...
Java 学习和实践笔记(11)
三大神器: 官方网址: http://www.jetbrains.com/idea/ 官方网址: https://code.visualstudio.com/ 官方网址: http://www.eclipse.org 装好了idea社区版,并试运行以下代码,OK! //TIP To <b>Run</b> code, press &l…...
开发实体类
开发实体类之间先在pom文件中加入该依赖 <!-- 开发实体类--><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><scope>provided</scope></dependency>我们在实体类中声明各个属…...
人工智能学习与实训笔记(十五):Scikit-learn库的基础与使用
人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 本篇目录 一、介绍 1. 1 Scikit-learn的发展历程及定义 1.2 理解算法包、算法库及算法框架之间的区别和联系 二、Scikit-learn官网结构 三、安装与设置 3.1 Python环境的安装与配置 3.2 Scikit-lea…...
插值与拟合算法介绍
在数据处理和科学计算领域,插值与拟合是两种极为重要的数据分析方法。它们被广泛应用于信号处理、图像处理、机器学习、金融分析等多个领域,对于理解和预测数据趋势具有至关重要的作用。本文将深入浅出地介绍这两种算法的基本原理,并结合C语言编程环境探讨如何在CSDN开发者社…...
下一代Windows系统曝光:基于GPT-4V,Agent跨应用调度,代号UFO
下一代Windows操作系统提前曝光了?? 微软首个为Windows而设的智能体(Agent) 亮相: 基于GPT-4V,一句话就可以在多个应用中无缝切换,完成复杂任务。整个过程无需人为干预,其执行成功…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
