当前位置: 首页 > news >正文

Vision Transformer - VIT

文章目录

    • 1. Embedding层
    • 2. Encoder层
    • 3. MLP Head层
    • 4. Hybrid混合模型

论文:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
网址:https://arxiv.org/abs/2010.11929

Hybrid - 传统CNN和Transformer混合模型

模型架构

image-20240220120819808

输入一张图片,首先会将其分为一个一个patches,然后将每个patches输入到embedding层(Linear Projection of Flattened Patches)。通过Embedding层后,我们就会得到一个个向量,这里我们通常将向量称为Token。我们会在这一系列Token到最前面增加一个新的Token,专门用于分类的class token。这里的class token的维度和我们刚才得到的token的维度相同。此外,我们还需要加上关于位置的信息,position embedding,对应于上图中的0,1,2,3,….

将这一系列token加上class token以及位置参数输入到Transformer Encoder之中,Transformer Encoder对应的又是右图中的Encoder Block重复堆叠L次。然后将class token所对应的进行输出。

VIT

1. Embedding层

对于标准的Transformer模块,要求输入的是token(向量)序列,即二维矩阵[num_token,token_dim]

在代码实现中,直接通过一个卷积层来实现以VIT-B/16为例,使用卷积核大小为 16 × 16 16\times16 16×16,stride为16,卷积核个数为768。

[224,224,3]->[14,14,768]->[796,768]

在输入Transformer Encoder之前需要加上class token以及position embedding,都是可训练参数

拼接class token:Cat([1,768],[196,768])->[197,768]

叠加position embedding:[197,768]->[197,768]

对于位置编码:

image-20240220125047435

使用位置编码后提升很大,但是各种位置编码之间的差异并不是很大,所以在源码中,默认使用的是1-D Position Embedding

关于训练得到的位置编码,它的每个位置上与其他位置上的余弦相似度:

image-20240220125524382


2. Encoder层

image-20240220125741622

需要注意:在MLP Block中,第一个全连接层,它的节点个数是我们输入节点个数的4倍,第二个全连接层又回将节点个数还原回原来的大小。


3. MLP Head层

在Transformer Encoder前有个Dropout层,后有一个LayerNorm。

训练ImageNet21K时是由Linear+tanh激活函数+Linear

但是迁移到ImageNet1k上或者自己的数据集上时,只有一个Linear

image-20240220130536622

论文中所给出的三种模型

image-20240220131707696

  • Layers是Transformer Encoder中重复堆叠Encoder Block的次数
  • Hidden Size是通过Embedding层后每个token的dim(向量的长度)
  • MLP size是Transformer Encoder中MLP Block第一个全连接的节点个数(是hidden size的四倍)
  • heads代表Transformer中Multi-head Attention的heads数

4. Hybrid混合模型

首先用传统的卷积神经网络去提取特征,再通过VIT模型得到最终的结果,特征提取部分采用ResNet50,但是不是采用传统的卷积层,而是使用StdConv2d,另外将所有的BatchNorm层替换成GroupNorm层,把stage4中的3个Block移至stage3中。

相关文章:

Vision Transformer - VIT

文章目录 1. Embedding层2. Encoder层3. MLP Head层4. Hybrid混合模型 论文:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 网址:https://arxiv.org/abs/2010.11929 Hybrid - 传统CNN和Transformer混合模型 模型架构 输…...

HTTP与HTTPS:网络安全之门户

源码分享 ​​https://docs.qq.com/sheet/DUHNQdlRUVUp5Vll2?tabBB08J2​​ 在进行网页爬取和数据收集时,我们经常会与HTTP(超文本传输协议)和HTTPS(安全的超文本传输协议)打交道。这两种协议都用于互联网上的数据传…...

头歌:共享单车之数据分析

第1关 统计共享单车每天的平均使用时间 package com.educoder.bigData.sharedbicycle;import java.io.IOException; import java.text.ParseException; import java.util.Collection; import java.util.Date; import java.util.HashMap; import java.util.Locale; import java…...

MySQL的数据类型和细节

1.整型 数值类型字节描述TINYINT[UNSIGNED]1很小的整数,默认有符号 [-128,127]/[0,255]SMALLINT[UNSIGNED]2较小的整数,默认有符号 [-32768,32767]/[0,65535]MEDIUMINT[UNSIGNED]3中等的整数,默认有符号 [-8388608,8388607]/[0,16777215]…...

自建AWS S3存储服务

unsetunset前言unsetunset AWS S3(Amazon S3,全名为亚马逊简易存储服务),是亚马逊公司利用其亚马逊网络服务系统所提供的网络在线存储服务。我常用的很多SaaS服务中提供的文件存储功能,底层也都是AWS S3,比…...

『论文阅读|研究用于视障人士户外障碍物检测的 YOLO 模型』

研究用于视障人士户外障碍物检测的 YOLO 模型 摘要1 引言2 相关工作2.1 障碍物检测的相关工作2.2 物体检测和其他基于CNN的模型 3 问题的提出4 方法4.1 YOLO4.2 YOLOv54.3 YOLOv64.4 YOLOv74.5 YOLOv84.6 YOLO-NAS 5 实验和结果5.1 数据集和预处理5.2 训练和实现细节5.3 性能指…...

LeetCode--1445. 苹果和桔子

文章目录 1 题目描述2 测试用例3 解题思路 1 题目描述 表: Sales ------------------------ | Column Name | Type | ------------------------ | sale_date | date | | fruit | enum | | sold_num | int | ------------------------(sale…...

Java基础知识

一、标识符规范 标识符必须以字母(汉字)、下划线、美元符号开头,其他部分可以是字母、下划线、美元符号,数字的任意组合。谨记不能以数字开头。java使用unicode字符集,汉字也可以用该字符集表示。因此汉字也可以用作变量名。 关键字不能用作…...

并发编程-Synchronized

什么是Synchronized synchronized是Java提供的一个关键字,Synchronized可以保证并发程序的原子性,可见性,有序性。 我们会把synchronized称为重量级锁。主要原因,是因为JDK1.6之前,synchronized是一个重量级锁相比于J…...

C语言——从头开始——深入理解指针(1)

一.内存和地址 我们知道计算上CPU(中央处理器)在处理数据的时候,是通过地址总线把需要的数据从内存中读取的,后通过数据总线把处理后的数据放回内存中。如下图所示: 计算机把内存划分为⼀个个的内存单元,每…...

微信小程序-绑定数据并在后台获取它

如图 遍历列表的过程中需要绑定数据&#xff0c;点击时候需要绑定数据 这里是源代码 <block wx:for"{{productList}}" wx:key"productId"><view class"product-item" bindtap"handleProductClick" data-product-id"{{i…...

【删除数组用delete和Vue.delete有什么区别】

删除数组用delete和Vue.delete有什么区别&#xff1f; 在 JavaScript 中&#xff0c;delete 和 Vue.js 中的 Vue.delete 是两个完全不同的概念&#xff0c;它们在删除数组元素时的作用和效果也有所不同。 JavaScript 中的 delete 关键字&#xff1a; 在原生 JavaScript 中&a…...

【QT+QGIS跨平台编译】之四十二:【QWT+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、QWT介绍二、QWT下载三、文件分析四、pro文件五、编译实践5.1 Windows下编译4.2 Linux下编译5.3 MacOS下编译一、QWT介绍 QWT是一个基于Qt框架的开源C++库,用于创建交互式的图形用户界面。它提供了丰富的绘图和交互功能,可以用于快速开发图形化应用程序。 QWT包…...

yum方式快速安装mysql

问题描述 使用yum的方式简单安装了一下mysql&#xff0c;对过程进行简单记录。 步骤 ①安装wget和vim sudo yum -y install wget vim②下载mysql的rpm包 sudo wget https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm③升级和更新rpm包 sudo rpm -Uv…...

基于Java的家政预约管理平台

功能介绍 平台采用B/S结构&#xff0c;后端采用主流的Springboot框架进行开发&#xff0c;前端采用主流的Vue.js进行开发。 整个平台包括前台和后台两个部分。 前台功能包括&#xff1a;首页、家政详情、家政入驻、用户中心模块。后台功能包括&#xff1a;家政管理、分类管理…...

C语言前世今生

C语言前世今生 C语言的发展历史 C语言于1972年11月问世&#xff0c;1978年美国电话电报公司&#xff08;AT&T&#xff09;贝尔实验室正式发布C语言&#xff0c;1983年由美国国家标准局&#xff08;American National Standards Institute&#xff0c;简称ANSI&#xff09…...

android aidl进程间通信封装通用实现-用法说明

接上一篇&#xff1a;android aidl进程间通信封装通用实现-CSDN博客 该aar包的使用还是比较方便的 一先看客户端 1 初始化 JsonProtocolManager.getInstance().init(mContext, "com.autoaidl.jsonprotocol"); //客户端监听事件实现 JsonProtocolManager.getInsta…...

【Java中23种设计模式-单例模式2--懒汉式线程不安全】

加油&#xff0c;新时代打工人&#xff01; 今天&#xff0c;重新回顾一下设计模式&#xff0c;我们一起变强&#xff0c;变秃。哈哈。 23种设计模式定义介绍 Java中23种设计模式-单例模式 package mode;/*** author wenhao* date 2024/02/19 09:16* description 单例模式--懒…...

【后端高频面试题--Linux篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;后端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 后端高频面试题--Linux篇 往期精彩内容Windows和Linux的区别&#xff1f;Unix和Linux有什么区别…...

网络原理HTTP/HTTPS(2)

文章目录 HTTP响应状态码200 OK3xx 表示重定向4xx5xx状态码小结 HTTPSHTTPS的加密对称加密非对称加密 HTTP响应状态码 状态码表⽰访问⼀个⻚⾯的结果.(是访问成功,还是失败,还是其他的⼀些情况…).以下为常见的状态码. 200 OK 这是⼀个最常⻅的状态码,表⽰访问成功 2xx都表示…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...