深度学习基础之《TensorFlow框架(3)—TensorBoard》
一、TensorBoard可视化学习
1、TensorFlow有一个亮点就是,我们能看到自己写的程序的可视化效果,这个功能就是TensorBoard
2、TensorFlow可用于训练大规模深度神经网络所需的计算,使用该工具涉及的计算往往复杂而深奥。为了方便TensorFlow程序的理解、调试和优化,TensorFlow提供了TensorBoard可视化工具
二、实现程序可视化过程
1、数据序列化
TensorBoard通过读取TensorFlow的事件文件来运行,需要将数据生成一个序列化的summary protobuf对象
将图序列化到本地events文件,这将在指定目录中生成一个events文件,其名称格式如下:
events.out.tfevents.{timestamp}.{hostname}
2、将可视化的图写入事件文件中API
(1)1.x版本:
tf.summary.FileWriter(path, graph=)
说明:
path:路径
graph:指定的图
(2)2.x版本:
writer = tf.summary.create_file_writer(path)
说明:创建一个文件写入器writer
path:路径
tf.summary.graph(graph)
说明:写入图
3、启动TensorBoard
终端输入:
tensorboard --logdir="事件文件的地址"
在浏览器中打开TensorBoard的图页面http://127.0.0.1:6006,就会看到图了
4、修改代码
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tfdef tensorflow_demo():"""TensorFlow的基本结构"""# TensorFlow实现加减法运算a_t = tf.constant(2)b_t = tf.constant(3)c_t = a_t + b_tprint("TensorFlow加法运算结果:\n", c_t)print(c_t.numpy())# 2.0版本不需要开启会话,已经没有会话模块了return Nonedef graph_demo():"""图的演示"""# TensorFlow实现加减法运算a_t = tf.constant(2)b_t = tf.constant(3)c_t = a_t + b_tprint("TensorFlow加法运算结果:\n", c_t)print(c_t.numpy())# 查看默认图# 方法1:调用方法default_g = tf.compat.v1.get_default_graph()print("default_g:\n", default_g)# 方法2:查看属性# print("a_t的图属性:\n", a_t.graph)# print("c_t的图属性:\n", c_t.graph)# 自定义图new_g = tf.Graph()# 在自己的图中定义数据和操作with new_g.as_default():a_new = tf.constant(20)b_new = tf.constant(30)c_new = a_new + b_newprint("c_new:\n", c_new)print("a_new的图属性:\n", a_new.graph)print("b_new的图属性:\n", b_new.graph)# 开启new_g的会话with tf.compat.v1.Session(graph=new_g) as sess:c_new_value = sess.run(c_new)print("c_new_value:\n", c_new_value)print("我们自己创建的图为:\n", sess.graph)# 可视化自定义图# 1)创建一个文件写入器writerwriter = tf.summary.create_file_writer("./tmp/summary")# 2)将图写入with writer.as_default():tf.summary.graph(new_g)return Noneif __name__ == "__main__":# 代码1:TensorFlow的基本结构# tensorflow_demo()# 代码2:图的演示graph_demo()
运行之后生成:./tmp/summary/events.out.tfevents.1708140220.server001.26046.0.v2
5、运行tensorboard
tensorboard --bind_all --logdir="./tmp/summary"
访问http://127.0.0.1:6006
6、图例说明
将“Auto-extract high-degree nodes”选项去除
图例就不是两个三角重叠在一起了
椭圆是OpNode,小圆是Constant,箭头是数据流动
参考资料:
https://tensorflow.google.cn/versions/r2.6/api_docs/python/tf/summary/graph
相关文章:
深度学习基础之《TensorFlow框架(3)—TensorBoard》
一、TensorBoard可视化学习 1、TensorFlow有一个亮点就是,我们能看到自己写的程序的可视化效果,这个功能就是TensorBoard 2、TensorFlow可用于训练大规模深度神经网络所需的计算,使用该工具涉及的计算往往复杂而深奥。为了方便TensorFlow程…...
杨氏矩阵和杨辉三角
杨氏矩阵 有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的,请编写程序在这样的矩阵中查找某个数字是否存在。 要求:时间复杂度小于O(N); 分析 若要满足要求时间复杂度小于O(N),就不能每一行一个个…...
PostgreSQL教程(四):高级特性
一、简介 在之前的章节里我们已经涉及了使用SQL在PostgreSQL中存储和访问数据的基础知识。现在我们将要讨论SQL中一些更高级的特性,这些特性有助于简化管理和防止数据丢失或损坏。最后,我们还将介绍一些PostgreSQL扩展。 本章有时将引用教程࿰…...
168基于matlab的六自由度并联摇摆台的反解控制算法
基于matlab的六自由度并联摇摆台的反解控制算法,stewart平台,配有GUI界面,可以自定义角度,杆长等参数。设定动平台位姿即能得到电机参数。程序已调通,可直接运行。 168 六自由度并联摇摆台 反解控制算法 (xiaohongshu.…...
MDC 日志跟踪笔记
一、前言 本文主要解析应用中比较实在的一个log4j的链路应用,在经过一段时间的应用后发现还是很稳的,就记录一下这个MDC 代表Mapped Diagnostic Context(映射式诊断上下文)的情况。 Tisp: 它是一个线程安全的存放诊断日志的容器 T…...
MySQL错误-this is incompatible with sql_mode=only_full_group_by完美解决方案
项目场景 有时候,遇到数据库重复数据,需要将数据进行分组,并取出其中一条来展示,这时就需要用到group by语句。 但是,如果mysql是高版本,当执行group by时,select的字段不属于group by的字段的…...
人工智能|机器学习——基于机器学习的舌苔检测
代码下载: 基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 1 研究背景 1.1.研究背景与意义 目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔…...
SQL查询转化为 Elasticsearch 查询
使用SQL 转化为查询 Elasticsearch 支持 sql 语句转化为 elasticsearch 的 查询语句 第一步: 打开在线转换工具的网页,进入工具页面 第二步:在指定的输入框中输入需要转换的 sql 语句。 您学会了这么简单的办法...
目标检测教程视频指南大全
魔鬼面具-哔哩哔哩视频指南 必看干货系列(建议搞深度学习的小伙伴都看看,特别是图像相关) 深度学习常见实验问题与实验技巧(适用于所有模型,小白初学者必看!)还在迷茫深度学习中的改进实验应该从哪里开始改起的同学,一定要进来看看了!用自身…...
【Linux取经路】文件系统之重定向的实现原理
文章目录 一、再来理解重定向1.1 输出重定向效果演示1.2 重定向的原理1.3 dup21.4 输入重定向效果演示1.5 输入重定向代码实现 二、再来理解标准输出和标准错误2.1 同时对标准输出和标准错误进行重定向2.2 将标准输出和标准错误重定向到同一个文件 三、再看一切皆文件四、结语 …...
JAVA设计模式结构型模式
一、前言 java设计模式主要分为创建型模式,结构型模式和行为型模式。上一篇主要总结了行为型设计模式,本章总结,结构型模式。像创建型模式就不写了,比较简单。大概知道是工厂模式和建造者模式,原型模式就行࿰…...
第4讲引入JWT前后端交互
引入JWT前后端交互 Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519); JWT就是一段字符串,用来进行用户身份认证的凭证,该字符串分成三段【头部、载荷、签证】 后端接口测试&…...
基于Java的车辆租赁管理平台/租车系统
功能介绍 平台采用B/S结构,后端采用主流的Springboot框架进行开发,前端采用主流的Vue.js进行开发。 整个平台包括前台和后台两个部分。 前台功能包括:首页、车辆详情、车辆预订、用户中心模块。后台功能包括:车辆管理、分类管理…...
如何升级至ChatGPT Plus:快速指南,ChatGPT的秘密武器GPT4.0是什么?
提到 ChatGPT。想必大家都有所耳闻。自从 2022 年上线以来,就受到国内外狂热的追捧和青睐,上线2个月,月活突破1个亿!!! 而且还在持续上涨中。因为有很多人都在使用 ChatGPT 。无论是各大头条、抖音等 App、…...
【天衍系列 05】Flink集成KafkaSink组件:实现流式数据的可靠传输 高效协同
文章目录 01 KafkaSink 版本&导言02 KafkaSink 基本概念03 KafkaSink 工作原理1.初始化连接2.定义序列化模式3.创建KafkaSink算子4.创建数据源5.将数据流添加到KafkaSink6.内部工作机制 04 KafkaSink参数配置05 KafkaSink 应用依赖06 KafkaSink 快速入门6.1 包结构6.2 项目…...
深度学习之pytorch实现逻辑斯蒂回归
深度学习之pytorch实现逻辑斯蒂回归 解决的问题数学公式logiatic函数损失值 代码与线性回归代码的区别数据损失值构造回归的函数 结果分析 解决的问题 logistic 适用于分类问题,这里案例( y为0和1 ,0和 1 分别代表一类) 于解决二分类…...
有事休假店铺无人看守怎么办?智能远程视频监控系统保卫店铺安全
在春节期间,很多自营店主也得到了久违的假期,虽然很多店主都是长期在店铺中看守,但遇到春节这样的日子,多数人还是选择回乡休假。面对店主休假或有事不能管理店铺时,传统的监控虽然可以做到单一的监控,却仍…...
酷开科技 | 酷开系统壁纸模式,让过年更有氛围感!
在阵阵爆竹声中,家家户户都沉浸在浓浓的年味中。过年,是团圆,是温暖。团团圆圆的日子里,仪式感不可少,换上一张喜气洋洋的电视壁纸吧,寓意幸福一年又一年。打开酷开系统壁纸模式挑选一张年味十足的壁纸&…...
Docker中部署flink集群的两种方式
文章目录 一、概述二、准备工作三、方式一四、方式二1、准备配置文件2、执行 docker 命令 一、概述 本文将通过 2 种方式在 docker 中部署 flink standalone 集群,集群中共有 4 个节点,分别是 1 个 jobManager 节点和 3 个 taskManager 节点。方式一能快…...
八、计算机视觉-边界填充
文章目录 前言一、原理二、具体的实现 前言 在Python中使用OpenCV进行边界填充(也称为zero padding)是一种常见的图像处理操作,通常用于在图像周围添加额外的像素以便进行卷积或其他操作。下面是使用OpenCV进行边界填充的基本原理和方法 一…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
