当前位置: 首页 > news >正文

【Langchain】+ 【baichuan】实现领域知识库【RAG】问答系统

本项目使用Langchainbaichuan 大模型, 结合领域百科词条数据(用xlsx保存),简单地实现了领域百科问答实现。

from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings, SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain_community.llms import OpenAI, Baichuan
from langchain_community.chat_models import ChatOpenAI, ChatBaichuan
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
#import langchain_community import chat_models
#print(chat_models.__all__)import streamlit as st
import pandas as pd
import os
import warnings
import time
warnings.filterwarnings('ignore')# 对存储了领域百科词条的xlsx文件进行解析
def get_xlsx_text(xlsx_file):df = pd.read_excel(xlsx_file, engine='openpyxl')text = ""for index, row in df.iterrows():text += row['title'].replace('\n', '')text += row['content'].replace('\n', '')text += '\n\n'return text# Splits a given text into smaller chunks based on specified conditions
def get_text_chunks(text):text_splitter = RecursiveCharacterTextSplitter(separators="\n\n",chunk_size=1000,chunk_overlap=200,length_function=len)chunks = text_splitter.split_text(text)return chunks# 对切分的文本块构建编码向量并存储到FASISS
# Generates embeddings for given text chunks and creates a vector store using FAISS
def get_vectorstore(text_chunks):# embeddings = OpenAIEmbeddings() #有经济条件的可以使用 opanaiembendingembeddings = SentenceTransformerEmbeddings(model_name='all-MiniLM-L6-v2')vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)return vectorstore
# Initializes a conversation chain with a given vector store# 对切分的文本块构建编码向量并存储到Chroma
# Generates embeddings for given text chunks and creates a vector store using Chroma
def get_vectorstore_chroma(text_chunks):# embeddings = OpenAIEmbeddings()embeddings = SentenceTransformerEmbeddings(model_name='all-MiniLM-L6-v2')vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)return vectorstoredef get_conversation_chain_baichuan(vectorstore):memory = ConversationBufferWindowMemory(memory_key='chat_history', return_message=True) # 设置记忆存储器conversation_chain = ConversationalRetrievalChain.from_llm(llm=Baichuan(temperature=temperature_input, model_name=model_select),retriever=vectorstore.as_retriever(),get_chat_history=lambda h: h,memory=memory)return conversation_chainos.environ["http_proxy"] = "http://127.0.0.1:7890"
os.environ["https_proxy"] = "http://127.0.0.1:7890"# langchain 可以通过设置环境变量来设置参数
os.environ['BAICHUAN_API_KEY'] = 'sk-88888888888888888888888888888888'
temperature_input = 0.7
model_select = 'Baichuan2-Turbo-192K'
raw_text = get_xlsx_text('领域文件/twiki百科问答.xlsx')text_chunks = get_text_chunks(raw_text)
vectorstore = get_vectorstore_chroma(text_chunks)
# Create conversation chain
qa = get_conversation_chain_baichuan(vectorstore)
questions = ["什么是森林经营项目?","风电项目开发过程中需要的主要资料?","什么是ESG"
]
for question in questions:result = qa(question)print(f"**Question**: {question} \n")print(f"**Answer__**: {result['answer']} \n")

相关文章:

【Langchain】+ 【baichuan】实现领域知识库【RAG】问答系统

本项目使用Langchain 和 baichuan 大模型, 结合领域百科词条数据(用xlsx保存),简单地实现了领域百科问答实现。 from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain_co…...

Anaconda、conda、pip、virtualenv的区别

① Anaconda Anaconda是一个包含180的科学包及其依赖项的发行版本。其包含的科学包包括:conda, numpy, scipy, ipython notebook等。 Anaconda具有如下特点: ▪ 开源 ▪ 安装过程简单 ▪ 高性能使用Python和R语言 ▪ 免费的社区支持 其特点的实现…...

【数据结构】每天五分钟,快速入门数据结构(一)——数组

目录 一.初始化语法 二.特点 三.数组中的元素默认值 四.时间复杂度 五.Java中的ArrayList类 可变长度数组 1 使用 2 注意事项 3 实现原理 4 ArrayList源码 5 ArrayList方法 一.初始化语法 // 数组动态初始化(先定义数组,指定数组长度&#xf…...

NBlog个人博客部署维护过程记录 -- 后端springboot + 前端vue

项目是fork的Naccl大佬NBlog项目,页面做的相当漂亮,所以选择了这个。可以参考2.3的效果图 惭愧,工作两年了也没个自己的博客系统,趁着过年时间,开始搭建一下. NBlog原项目的github链接:Naccl/NBlog: &#…...

WireShark 安装指南:详细安装步骤和使用技巧

Wireshark是一个开源的网络协议分析工具,它能够捕获和分析网络数据包,并以用户友好的方式呈现这些数据包的内容。Wireshark 被广泛应用于网络故障排查、安全审计、教育及软件开发等领域。接下将讲解Wireshark的安装与简单使用。 目录 Wireshark安装步骤…...

PyTorch detach():深入解析与实战应用

PyTorch detach():深入解析与实战应用 🌵文章目录🌵 🌳引言🌳🌳一、计算图与梯度传播🌳🌳二、detach()函数的作用🌳🌳三、detach()与requires_grad&#x1f3…...

uniapp 开发一个密码管理app

密码管理app 介绍 最近发现自己的账号密码真的是太多了,各种网站,系统,公司内网的,很多站点在登陆的时候都要重新设置密码或者通过短信或者邮箱重新设置密码,真的很麻烦 所以准备开发一个app用来记录这些站好和密码…...

Postman详细攻略

🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 一、Postman背景介绍 用户在开发或者调试网络程序或者是网页B/S模式的程序的时候是需要一些方法…...

如何在本地服务器部署TeslaMate并远程查看特斯拉汽车数据无需公网ip

文章目录 1. Docker部署TeslaMate2. 本地访问TeslaMate3. Linux安装Cpolar4. 配置TeslaMate公网地址5. 远程访问TeslaMate6. 固定TeslaMate公网地址7. 固定地址访问TeslaMate TeslaMate是一个开源软件,可以通过连接特斯拉账号,记录行驶历史,统…...

如何在CentOS安装SQL Server数据库并实现无公网ip环境远程连接

文章目录 前言1. 安装sql server2. 局域网测试连接3. 安装cpolar内网穿透4. 将sqlserver映射到公网5. 公网远程连接6.固定连接公网地址7.使用固定公网地址连接 前言 简单几步实现在Linux centos环境下安装部署sql server数据库,并结合cpolar内网穿透工具&#xff0…...

备战蓝桥杯 Day5

1191:流感传染 【题目描述】 有一批易感人群住在网格状的宿舍区内,宿舍区为n*n的矩阵,每个格点为一个房间,房间里可能住人,也可能空着。在第一天,有些房间里的人得了流感,以后每天,得…...

爬虫学习笔记-scrapy爬取电影天堂(双层网址嵌套)

1.终端运行scrapy startproject movie,创建项目 2.接口查找 3.终端cd到spiders,cd scrapy_carhome/scrapy_movie/spiders,运行 scrapy genspider mv https://dy2018.com/ 4.打开mv,编写代码,爬取电影名和网址 5.用爬取的网址请求,使用meta属性传递name ,callback调用自定义的…...

Unity笔记:数据持久化的几种方式

正文 主要方法: ScriptableObjectPlayerPrefsJSONXML数据库(如Sqlite) 1. PlayerPerfs PlayerPrefs 存储的数据是全局共享的,它们存储在用户设备的本地存储中,并且可以被应用程序的所有部分访问。这意味着&#xf…...

MySQL 基础知识(八)之用户权限管理

目录 1 MySQL 权限管理概念 2 用户管理 2.1 创建用户 2.2 查看当前登录用户 2.3 修改用户名 2.4 删除用户 3 授予权限 3.1 授予用户管理员权限 3.2 授予用户数据库权限 3.3 授予用户表权限 3.4 授予用户列权限 4 查询权限 5 回收权限 1 MySQL 权限管理概念 关于 M…...

QT编写工具基本流程(自用)

以后有人让你写工具的时候,可以方便用这个模版及时提高工作效率,可以争取早点下班。包含库目录,头文件目录,输出目录以及翻译和部署,基本上都全了,也可以做收藏用用。 文章目录 1、创建项目Dialog Widget都…...

代码随想录算法训练营第三六天 | 无重叠区间、划分字母区间、合并区间

目录 无重叠区间划分字母区间合并区间 LeetCode 435. 无重叠区间 LeetCode 763.划分字母区间 LeetCode 56. 合并区间 无重叠区间 给定一个区间的集合 intervals ,其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠…...

DP读书:《openEuler操作系统》(十)套接字 Socket 数据传输的基本模型

10min速通Socket 套接字简介数据传输基本模型1.TCP/IP模型2.UDP模型 套接字类型套接字(Socket)编程Socket 的连接1.连接概述(1)基本概念(2)连接状态(3)连接队列 2.建立连接3.关闭连接 socket 编程接口介绍数据的传输1. 阻塞与非阻塞2. I/O复用 数据的传输…...

抓住母亲节销售机会:Shopee 平台选品策略大揭秘

母亲节,作为一个重要的购物节日,为卖家带来了巨大的销售机会。在Shopee这样的电商平台上,如何通过有效的选品策略吸引消费者、提高销量呢?下面将介绍一些关键策略,帮助卖家在母亲节期间实现销售突破。 先给大家推荐一…...

Mysql如何优化数据查询方案

mysql做读写分离 读写分离是提高mysql并发的首选方案。 Mysql主从复制的原理 mysql的主从复制依赖于binlog,也就是记录mysql上的所有变化并以二进制的形式保存在磁盘上,复制的过程就是将binlog中的数据从主库传输到从库上。 主从复制过程详细分为3个阶段…...

SwiftUI 更自然地向自定义视图传递参数的“另类”方式

概览 在 SwiftUI 中,正是自定义视图让我们的 App 变得与众不同!然而,除了传统的视图接口定义方式以外,我们其实还可以有更“银杏化”的选择。 如上图所示:对于 SubView 子视图所需的参数我们一开始并没有操之过急&…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

Java 加密常用的各种算法及其选择

在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...