当前位置: 首页 > news >正文

光芒绽放:妙用“GLAD原则”打造标准的数据可视化图表

光芒绽放:妙用“GLAD原则”打造标准的数据可视化图表


文章目录

  • 光芒绽放:妙用“GLAD原则”打造标准的数据可视化图表
  • 前言
  • 一、可视化工具有哪些?
  • 二、那如何做出正确可视化图表 ?GLAD原则
    • 1.G原则
    • 2.L原则
    • 3.A原则
    • 4.D原则
  • 三、总结
  • 最后


前言

之前读过一本书《人类简史:从动物到上帝》。是 1976年出生的赫拉利写的,在2016年我读了中文版 。该书在2011年出版的希伯来文版,另外还被翻译为45种语言。里面有一句经典的话是这么说的。

人类不了解自己,只好让科技替自己做决定。
也说到了关于数据和技术的深远影响

这个也是坚定我走数据这条路的原因。大家可以去看看。

一、可视化工具有哪些?

以下一些工具是比较常见的 可视化工具了,大家了解下(来源搜索引擎)

  • Tableau: 一款功能强大的商业智能工具,支持创建交互式和高度定制化的可视化。
  • PowerBI和Excel :微软推出的业务分析工具,能够将数据转化为丰富的报表和仪表板。
  • Google Data Studio:谷歌的可视化工具,可以连接多种数据源,创建仪表板并与他人共享。
  • D3.js:一个基于JavaScript的数据驱动文档库,用于创建动态和交互式的数据可视化。
  • Matplotlib: 一个用于绘制静态、动态和交互式图表的Python库,特别适用于数据科学领域。
  • Plotly:一个支持多种语言(包括Python、R和JavaScript)的绘图库,用于创建交互式图表。
  • Infogram:一个在线可视化工具,适用于创建各种图表、图形和地
  • QlikView/Qlik Sense:用于创建交互式仪表板的商业智能工具,支持实时数据析。
  • Highcharts:一款用于创建交互式图表的JavaScript图表库。
  • Chart.js:轻量级的JavaScript图表库,适用于在网页上创建简单的图表。
  • Superset:Apache Superset是一个现代的数据探索和可视化平台。它功能强大且十分易用,可对接各种数据源,包括很多现代的大数据分析引擎,拥有丰富的图表展示形式,并且支持自定义仪表

在中国用的比较多的有

  • 百度数据图谱: 百度推出的在线数据可视化工具,支持用户通过简单的拖拽操作创建各种图表.
  • DataV 数据可视化: 阿里巴巴旗下的产品,提供丰富的可视化组件,支持实时数据展示、数据分析和仪表盘设计。
  • 图格易达: 提供数据可视化、图表制作等服务,支持多种图表类型和数据源。
  • FineReport/FineBI: 功能强大的报表和数据可视化工具,支持多种图表类型,适用于企业级数据分析和报告制作。
  • 云图: 专注于大数据可视化的公司,提供可视化分析、数据展示等服务。
  • 易观方舟: 主要用于移动应用数据分析和可视化,帮助企业更好地理解用户行为和趋势。
  • smart BI:
  • 观远 BI :

二、那如何做出正确可视化图表 ?GLAD原则

最近在 学习帆软BI,学到了GLAD原则分享给大家
在这里插入图片描述
GLAD原则是什么?
Good data and insight—需要好的数据和洞察
Less Nosie----去掉噪音和干扰因素
Accurate expression ----需要准确的表达
Distinct Mark —(突出分析重点 )
在这里插入图片描述

1.G原则

这个其实大家很好理解

所有的数据分析层次分一般分为几种

描述型分析:比如数据监控,比如上线一个新产品看产品状态
预测型分析:就是很来理解,比如回归,预测未来的销售额
诊断性分析:也很好理解,就是比如 有个销售员,通过各种维度和指标的分析,分析哪个销售更优秀。
指导型分析:通过分析,指导运营做业务决策,发挥更好的商业价值

 - 需要满足MECE 原则 ,也就是 不重复,不遗漏,数据是否使用适当

比如 下面的图看出什么 ?
在这里插入图片描述
那如果换一个思路呢? 下图可以看出 20岁以下的医美人数每年占比趋势在增加。
在这里插入图片描述

2.L原则

  • 图表颜色降噪
    图1正确,图2错误
    在这里插入图片描述
  • 辅助信息降噪1
    图1错误,图2正确(单位改为百万,双坐标)
    在这里插入图片描述
  • 辅助信息降噪2
    图1错误,图2正确
    在这里插入图片描述

3.A原则

  • 根据分析目的使用适合的图表
    在这里插入图片描述

  • 数据密度是否适合,数据密度小

图1错误,图2正确

图1
在这里插入图片描述

图2
在这里插入图片描述

  • 数据密度是否适合,数据密度大
    图1错误,指标要多
    在这里插入图片描述
    图2正确 (分2个图显示)
    在这里插入图片描述

  • 显示效果是否表达准确,坐标轴失真
    图1正确 图2错误(坐标轴太大)

在这里插入图片描述

  • 显示效果是否表达准确,过渡装饰

图1正确 图2错误(没有必要)在这里插入图片描述

4.D原则

  • 画龙点睛-打造视觉反差

在这里插入图片描述

  • 画龙点睛-是否突出的洞察标识(加入平均线)
    在这里插入图片描述

  • 画龙点睛-是否突出重点

在这里插入图片描述

三、总结

本文 的GLAD原则 介绍主要来自《 乐见数据:商业数据可视化思维》一书马世权老师的书,大家可以去读一下。写技术博客也是一样是一种累计,需要写一些对自己或者对他人用的。如果你是数据分析师,是数据产品,是数据开发,或者是从事数据相关的工作或许上面文章对你有帮助。

最后

希望这个GLAD原则 ,对大家作可视化分析有帮助 。
一键三连,心想事成。

相关文章:

光芒绽放:妙用“GLAD原则”打造标准的数据可视化图表

光芒绽放:妙用“GLAD原则”打造标准的数据可视化图表 文章目录 光芒绽放:妙用“GLAD原则”打造标准的数据可视化图表前言一、可视化工具有哪些?二、那如何做出正确可视化图表 ?GLAD原则1.G原则2.L原则3.A原则4.D原则 三、总结最后…...

如何设计出用于喜欢的界面

要设计出用户喜欢的界面,你可以考虑以下几个方面: 用户研究:首先要了解用户的需求和偏好。你可以通过用户调研、用户访谈和数据分析来获取这些信息。了解用户的行为模式、喜好和痛点,有助于设计出更吸引人的界面。 直观的布局&am…...

第三篇【传奇开心果系列】Python的文本和语音相互转换库技术点案例示例:pyttsx3实现语音助手经典案例

传奇开心果短博文系列 系列短博文目录Python的文本和语音相互转换库技术点案例示例系列 短博文目录一、项目背景和目标二、雏形示例代码三、扩展思路介绍四、与其他库和API集成示例代码五、自定义语音示例代码六、多语言支持示例代码七、语音控制应用程序示例代码八、文本转语音…...

JS中数组的常用方法

concat() 连接两个或更多的数组,并返回结果。 let array1 [1, 2, 3]; let array2 [4, 5, 6]; let concatenatedArray array1.concat(array2); console.log(concatenatedArray); // [1, 2, 3, 4, 5, 6]join() 把数组的所有元素放入一个字符串。元素通过指定…...

最好用的论文检索网站

网站展示: 网站链接 sci-hub文献检索 用途: 可以用文章的DOI来检索并下载文章...

AI专题:AI巨轮滚滚向前

今天分享的是电子系列深度研究报告:《AI专题:AI巨轮滚滚向前》。 (报告出品方:方正证券) 报告共计:65页 来源:人工智能学派 Gemini 1.5 Pro 性能显著增强,长上下文理解取得突破 …...

SpringBoot常见问题

1 引言 Spring Boot是一个基于Spring框架的快速开发脚手架,它简化了Spring应用的初始化和搭建过程,提供了众多便利的功能和特性,比如自动配置、嵌入式Tomcat等,让开发人员可以更加专注于业务逻辑的实现。   Spring Boot还提供了…...

五种多目标优化算法(MOAHA、MOGWO、NSWOA、MOPSO、NSGA2)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

一、5种多目标优化算法简介 1.1MOAHA 1.2MOGWO 1.3NSWOA 1.4MOPSO 1.5NSGA2 二、5种多目标优化算法性能对比 为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3)&#xff…...

用 LangChain 和 Milvus 从零搭建 LLM 应用

如何从零搭建一个 LLM 应用?不妨试试 LangChain Milvus 的组合拳。 作为开发 LLM 应用的框架,LangChain 内部不仅包含诸多模块,而且支持外部集成;Milvus 同样可以支持诸多 LLM 集成,二者结合除了可以轻松搭建一个 LL…...

[Bug解决] Invalid bound statement (not found)出现原因和解决方法

1、问题描述 在写了一个很普通的查询语句之后,出现了下面的报错信息 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.xxx.oauth.mapper.WxVisitorQrBeanMapper.selectByComIdAndEmpId at org.apache.ibatis.binding.Mappe…...

Qt:Qt3个窗口类的区别、VS与QT项目转换

一、Qt3个窗口类的区别 QMainWindow:包含菜单栏、工具栏、状态栏 QWidget:普通的一个窗口,什么也不包括 QDialog:对话框,常用来做登录窗口、弹出窗口(例如设置页面) QDialog实现简易登录界面…...

uni-app判断不同端

大家好&#xff0c;今天给大家分享的知识是在uni-app中如何区分是在什么端操作的程序 话不多说直接上代码&#xff1a; // #ifdef APP-PLUS<view>APP端</view>// #endif// #ifdef H5<view>H5端</view>// #endif// #ifdef MP<view>小程序端</v…...

计算机网络-网络设备防火墙是什么?

一、防火墙基本概念 前面我们学习了交换机、路由器是网络中常用的设备&#xff0c;现实中还有一个很重要的设备-防火墙。防火墙这一设备通常用于两个网络之间有针对性的、逻辑意义上的隔离。在网络通信领域&#xff0c;防火墙是一种安全设备。它用于保护一个网络区域免受来自另…...

Code Composer Studio (CCS) - Breakpoint (断点)

Code Composer Studio [CCS] - Breakpoint [断点] 1. BreakpointReferences 1. Breakpoint 选中断点右键 -> Breakpoint Properties… Skip Count&#xff1a;跳过断点总数&#xff0c;在断点执行之前设置总数 Current Count&#xff1a;当前跳过断电累计值 References […...

人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_001---人工智能工作笔记0096

使用centos安装,注意安装之前,保证系统可以联网,然后执行yum update 先去更新一下系统,可以省掉很多麻烦 20240219_150031 这里我们使用centos系统吧,使用习惯了. ChatGlm首先需要一台个人计算机,或者服务器, 要的算力,训练最多,微调次之,推理需要算力最少 其实很多都支持C…...

分层钱包HD钱包

bc1 开头的通常指的是比特币&#xff08;Bitcoin&#xff09;的地址&#xff0c;这种格式遵循了比特币改进提案BIP 0173中定义的Bech32编码格式。Bech32地址也被称为"SegWit"地址&#xff0c;它们支持Segregated Witness功能&#xff0c;这是比特币网络为了提高区块链…...

基于python+mysql的宠物领养网站系统

功能介绍 平台采用B/S结构&#xff0c;后端采用主流的Python语言进行开发&#xff0c;前端采用主流的Vue.js进行开发。 整个平台包括前台和后台两个部分。 前台功能包括&#xff1a;首页、宠物详情页、用户中心模块。后台功能包括&#xff1a;总览、领养管理、宠物管理、分类…...

机器学习入门--门控循环单元(GRU)原理与实践

GRU模型 随着深度学习领域的快速发展&#xff0c;循环神经网络&#xff08;RNN&#xff09;已成为自然语言处理&#xff08;NLP&#xff09;等领域中常用的模型之一。但是&#xff0c;在RNN中&#xff0c;如果时间步数较大&#xff0c;会导致梯度消失或爆炸的问题&#xff0c;…...

GitHub Actions

GitHub Actions GitHub Actions 是 GitHub 提供的一种持续集成&#xff08;CI&#xff09;和持续部署&#xff08;CD&#xff09;解决方案。它可以让你在 GitHub 仓库中直接自动化、定制化和执行软件开发工作流程。 比如&#xff0c;当有新的推送到仓库或者新的 Pull Request…...

harmony 鸿蒙系统学习 安装ohpm报错 ohpm install failed

一. 安装配置 DevEco Studio 安装包时报错 execute ohpm install failed. Install task failed: ArkTS 3.2.12.5. Install ArkTS dependencies failed. 解决办法 找原因&#xff0c;首先&#xff0c;我的电脑中之前安装过node&#xff0c;也许是因为这个。&#xff08;其实…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...