Paddlepaddle使用自己的VOC数据集训练目标检测(0废话简易教程)
一 安装paddlepaddle和paddledection(略)
笔者使用的是自己的数据集
二 在dataset目录下新建自己的数据集文件,如下:

其中


xml文件内容如下:

另外新建一个createList.py文件:
# -- coding: UTF-8 --
import os
import os.path as osp
import re
import randomdevkit_dir = '../smoke/'
years = ['2007', '2012']def get_dir(devkit_dir, type):return osp.join(devkit_dir, type)def walk_dir(devkit_dir):filelist_dir = get_dir(devkit_dir, 'ImageSets/Main')annotation_dir = get_dir(devkit_dir, 'annotations')img_dir = get_dir(devkit_dir, 'images')trainval_list = []test_list = []added = set()for _, _, files in os.walk(filelist_dir):for fname in files:img_ann_list = []if re.match('train\.txt', fname):img_ann_list = trainval_listelif re.match('val\.txt', fname):img_ann_list = test_listelse:continuefpath = osp.join(filelist_dir, fname)for line in open(fpath):name_prefix = line.strip().split()[0]if name_prefix in added:continueadded.add(name_prefix)ann_path = osp.join(annotation_dir, name_prefix + '.xml')img_path = osp.join(img_dir, name_prefix + '.jpg')assert os.path.isfile(ann_path), 'file %s not found.' % ann_pathassert os.path.isfile(img_path), 'file %s not found.' % img_pathimg_ann_list.append((img_path, ann_path))return trainval_list, test_listdef prepare_filelist(devkit_dir, output_dir):trainval_list = []test_list = []trainval, test = walk_dir(devkit_dir)trainval_list.extend(trainval)test_list.extend(test)random.shuffle(trainval_list)with open(osp.join(output_dir, 'trainval.txt'), 'w') as ftrainval:for item in trainval_list:ftrainval.write(item[0] + ' ' + item[1] + '\n')with open(osp.join(output_dir, 'test.txt'), 'w') as ftest:for item in test_list:ftest.write(item[0] + ' ' + item[1] + '\n')if __name__ == '__main__':prepare_filelist(devkit_dir, '../smoke')
一个data2tarin.py文件:
# -- coding: UTF-8 --
import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xml = r"D:\Coding\PaddleDetection-release-2.7\dataset\smoke\annotations"
save_path = r"D:\Coding\PaddleDetection-release-2.7\dataset\smoke\ImageSets\Main"if not os.path.exists(save_path):os.makedirs(save_path)total_xml = os.listdir(xml)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)print("train and val size", tv)
print("traub size", tr)
ftrainval = open(os.path.join(save_path, 'trainval.txt'), 'w')
ftest = open(os.path.join(save_path, 'test.txt'), 'w')
ftrain = open(os.path.join(save_path, 'train.txt'), 'w')
fval = open(os.path.join(save_path, 'val.txt'), 'w')for i in list:name = total_xml[i][:-4]+'\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
运行以上两个脚本,结果如图:

新建label_list.txt文件,内容如下,为标签文件:

三 新建smoke.yml文件

内容如下:
metric: VOC
map_type: 11point
num_classes: 4TrainDataset:name: VOCDataSetdataset_dir: dataset/smokeanno_path: trainval.txtlabel_list: label_list.txtdata_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']EvalDataset:name: VOCDataSetdataset_dir: dataset/smokeanno_path: test.txtlabel_list: label_list.txtdata_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']TestDataset:name: ImageFolderanno_path: dataset/smoke/label_list.txt
主要修改num_classes以及dataset_dir和anno_path
四 修改yolov3.yml文件,内容如下:

主要修改第一行
五 运行
![]()
六 大功告成

相关文章:
Paddlepaddle使用自己的VOC数据集训练目标检测(0废话简易教程)
一 安装paddlepaddle和paddledection(略) 笔者使用的是自己的数据集 二 在dataset目录下新建自己的数据集文件,如下: 其中 xml文件内容如下: 另外新建一个createList.py文件: # -- coding: UTF-8 -- imp…...
【解析】C语言两个实例
例一: 下面程序输出什么? int main() { int i 43; int n printf("%d\n",i); printf("%d\n",n); return 0; } 大家深入考虑一下为什么返回是3这背后有什么鲜为人知的秘密到底是C语言离奇的规定还是深思熟…...
阅读笔记(Multimedia Systems2020)Review on image-stitching techniques
Wang Z, Yang Z. Review on image-stitching techniques[J]. Multimedia Systems, 2020, 26: 413-430. DOI https://doi.org/10.1007/s00530-020-00651-y...
【Java程序员面试专栏 数据结构】三 高频面试算法题:栈和队列
一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,因为栈和队列这两哥们结构特性比较向对应,所以放到一篇Blog中集中练习 题目题干直接给出对应博客链接,这里只给出简单思路、代码实现、复杂度分析 题目关键字…...
Python | Conda常用命令
一、介绍 1、Anaconda工具 Anaconda是一个用于数据科学和机器学习的开源软件包管理器和环境管理器。它包含了许多流行的数据科学工具和库,如Python、Jupyter Notebook、numpy、pandas、scikit-learn等,可以帮助用户轻松地管理和安装这些工具和库。Anaco…...
Linux 驱动开发基础知识——APP 怎么读取按键值(十二)
个人名片: 🦁作者简介:学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:Vir2021GKBS 🐼本文由…...
【FastAPI】P3 请求与响应
目录 请求路径参数查询参数 响应JSON 响应文本响应返回 Pydantic 模型 在网络通讯中,请求(Request) 与 响应(Response) 扮演着至关重要的角色,它们构成了客户端与服务器间互动的根本理念。 请求࿰…...
Python学习-流程图、分支与循环(branch and loop)
十、流程图 1、流程图(Flowchart) 流程图是一种用于表示算法或代码流程的框图组合,它以不同类型的框框代表不同种类的程序步骤,每两个步骤之间以箭头连接起来。 好处: 1)代码的指导文档 2)有助…...
Python Flask Web 框架学习笔记+完整项目
Flask是一个轻量级的基于Python的web框架。 我们建议使用最新版本的 Python。Flask 支持 Python 3.8 及更高版本。 官网:欢迎使用 Flask — Flask 文档 (3.0.x) (palletsprojects.com) RESTFul API:Python Flask高级编程之REST…...
XML Map 端口进阶篇——常用关键字和格式化器详解
XML Map 端口是用于在不同XML之间建立关系映射的工具,允许通过拖拽操作实现源XML和目标 XML之间的数据字段映射,除此之外,XML Map 端口还提供了其它丰富多彩的功能,使用户能够更加灵活和高效的处理XML 数据映射任务,让…...
排序算法之——直接插入排序
直接插入排序——以升序排列为例 1.1基本思想1.2动态图示感知1.3静态图示详解1.4代码实现1.5时间复杂度1.5.1最好情况1.5.2最差情况 1.6空间复杂度1.7稳定性1.7.1一个小问题 1.1基本思想 把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直…...
突出最强算法模型——回归算法 !!
文章目录 1、特征工程的重要性 2、缺失值和异常值的处理 (1)处理缺失值 (2)处理异常值 3、回归模型的诊断 (1)残差分析 (2)检查回归假设 (3)Cooks 距离 4、学…...
云数据库 Redis 性能深度评测(阿里云、华为云、腾讯云、百度智能云)
在当今的云服务市场中,阿里云、腾讯云、华为云和百度智能云都是领先的云服务提供商,他们都提供了全套的云数据库服务,其中 Redis属于RDS 之后第二被广泛应用的服务,本次测试旨在深入比较这四家云服务巨头在Redis云数据库性能方面的…...
Android---Retrofit实现网络请求:Java 版
简介 在 Android 开发中,网络请求是一个极为关键的部分。Retrofit 作为一个强大的网络请求库,能够简化开发流程,提供高效的网络请求能力。 Retrofit 是一个建立在 OkHttp 基础之上的网络请求库,能够将我们定义的 Java 接口转化为…...
使用静态CRLSP配置MPLS TE隧道
正文共:1591 字 13 图,预估阅读时间:4 分钟 静态CRLSP(Constraint-based Routed Label Switched Paths,基于约束路由的LSP)是指在报文经过的每一跳设备上(包括Ingress、Transit和Egress…...
gentoo安装笔记
最近比较闲,所以挑战一下自己,在自己的台式电脑上安装gentoo 下面记录了我亲自安装的步骤,作为以后我再次安装时参考所用。 整体步骤 一般来将一个linux发行版的安装步骤其实大体上都差不多,基本分为一下几步: 1. …...
Git如何使用 五分钟快速入门
Git如何使用 五分钟快速入门 Git是一个分布式版本控制系统,它可以帮助开发人员跟踪和管理项目的代码变更。与传统的集中式版本控制系统(如SVN)不同,Git允许开发人员在本地存储完整的代码仓库,并且可以独立地进行代码修…...
FreeRTOS学习笔记——(FreeRTOS临界段代码保护及调度器挂起与恢复)
这里写目录标题 1,临界段代码保护简介(熟悉)2,临界段代码保护函数介绍(掌握)3,任务调度器的挂起和恢复(熟悉) 1,临界段代码保护简介(熟悉…...
箱形理论在交易策略中的实战应用与优化
箱形理论,简单来说,就是将价格波动分成一段一段的方框,研究这些方框的高点和低点,来推测价格的趋势。 在上升行情中,价格每突破新高价后,由于群众惧高心理,可能会回跌一段,然后再上升…...
MinIO 和 Apache Tika:文本提取模式
Tl;dr: 在这篇文章中,我们将使用 MinIO Bucket Notifications 和 Apache Tika 进行文档文本提取,这是大型语言模型训练和检索增强生成 LLM和RAG 等关键下游任务的核心。 前提 假设我想构建一个文本数据集,然后我可以用它来微调 LLM.为了做…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
