当前位置: 首页 > news >正文

大语言模型LLM中Transformer模型的调用过程与步骤

在LLM(Language Model)中,Transformer是一种用来处理自然语言任务的模型架构。下面是Transformer模型中的调用过程和步骤的简要介绍:

数据预处理:将原始文本转换为模型可以理解的数字形式。这通常包括分词、编码和填充等操作。

嵌入层(Embedding Layer):将输入的词索引转换为稠密的词向量。Transformer中,嵌入层有两个子层:位置编码和嵌入层。

编码器(Encoder):Transformer由多个编码器堆叠而成。每个编码器由两个子层组成:自注意力层(Self-Attention Layer)和前馈神经网络层(Feed-Forward Neural Network Layer)。

自注意力层:通过计算输入序列中单词之间的相互关系,为每个单词生成一个上下文相关的表示。自注意力层的输入是词嵌入和位置编码,输出是经过自注意力计算的编码。

前馈神经网络层:通过对自注意力层的输出进行一系列线性和非线性变换,得到最终的编码输出。

解码器(Decoder):与编码器类似,解码器也是多个堆叠的层,每个层由三个子层组成:自注意力层、编码器-解码器注意力层(Encoder-Decoder Attention Layer)和前馈神经网络层。

编码器-解码器注意力层:在解码器中,这一层用于获取编码器输出的信息,以帮助生成下一个单词的预测。

线性和softmax层:通过线性变换和softmax激活函数,将最终的解码器输出转换为预测的词序列。

下面是少量代码示例,展示如何在PyTorch中使用Transformer模型:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Transformerclass TransformerModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_heads, num_layers):super(TransformerModel, self).__init__()self.embedding = nn.Embedding(vocab_size, embed_dim)self.transformer = nn.Transformer(d_model=embed_dim, nhead=num_heads, num_encoder_layers=num_layers)def forward(self, src):src_embed = self.embedding(src)output = self.transformer(src_embed)return output

在LLM (Language Model) 中的Transformer模型中,通过以下步骤进行调用:

  1. 导入必要的库和模块:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
  1. 加载预训练模型和分词器:
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')

在这个例子中,我们使用了gpt2预训练模型和对应的分词器。

  1. 处理输入文本:
input_text = "输入你想要生成的文本"
input_ids = tokenizer.encode(input_text, return_tensors='pt')

使用分词器的encode方法将输入文本编码为模型可接受的输入张量。

  1. 生成文本:
outputs = model.generate(input_ids, max_length=100, num_return_sequences=5)

使用模型的generate方法生成文本。input_ids是输入张量,max_length指定生成文本的最大长度,num_return_sequences指定生成的文本序列数量。

  1. 解码生成的文本:
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

使用分词器的decode方法将模型生成的输出张量解码为文本,并打印生成的文本。

在LLM中,有几个关键的概念需要理解:

  • Logits:在生成文本时,模型会计算每个词的概率分布,这些概率分布被称为logits。模型生成的文本会基于这些logits进行采样。
  • Tokenizer:分词器将输入的连续文本序列拆分为模型能够理解的词元(tokens)。它还提供了把模型的输出转化回文本的方法。
  • Model:模型是一个神经网络,它经过预训练学习了大量的文本数据,并能够生成和理解文本。

Prompt是指在生成文本时提供给模型的初始提示。例如,给模型的输入文本是:“Once upon a time”,那么模型可能会继续生成:“there was a beautiful princess”. Prompt可以被用来引导模型生成特定的风格或内容的文本。

下面是一个完整的示例:

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')outputs = model.generate(input_ids, max_length=100, num_return_sequences=5)for output in outputs:generated_text = tokenizer.decode(output, skip_special_tokens=True)print(generated_text)

这个示例将生成以"Once upon a time"为初始提示的文本序列,并打印出5个生成的文本序列。

相关文章:

大语言模型LLM中Transformer模型的调用过程与步骤

在LLM(Language Model)中,Transformer是一种用来处理自然语言任务的模型架构。下面是Transformer模型中的调用过程和步骤的简要介绍: 数据预处理:将原始文本转换为模型可以理解的数字形式。这通常包括分词、编码和填充…...

mysql connect unblock with mysqladmin flush-hosts

原因 同一个ip在短时间内产生太多(超过max_connect_errors的最大值)中断的数据库连接而导致的阻塞。 查看 max_connect_errors show variables like max_connect_errors; 解决 前提:需要换一个IP地址连接 方法一 增大 max_connect_err…...

每日一练:前端js实现算法之两数之和

方法一&#xff1a;暴力法 function twoSum(nums, target) {for (let i 0; i < nums.length; i) {for (let j i 1; j < nums.length; j) {if (nums[i] nums[j] target) {return [i, j];}}}return null; }方法二&#xff1a;哈希表 function twoSum(nums, target) …...

17.隐式参数的定义和使用

目录 概述实践代码执行 结束 概述 实践 代码 package com.fun.scalaobject ImplicitParamsApp {def main(args: Array[String]): Unit {say("天下")implicit val word "spark"// 多个报错 // implicit val word2 "flink"implicit val con…...

简单介绍一下WebRTC中NACK机制

WebRTC中的NACK&#xff08;Negative Acknowledgement&#xff09;是一种用于实时通信的网络协议&#xff0c;用于在传输过程中检测和纠正丢包。当接收方检测到数据包丢失时&#xff0c;它会发送一个NACK消息给发送方&#xff0c;请求重新发送丢失的数据包。 NACK的工作原理如…...

05 Flink 的 WordCount

前言 本文对应于 spark 系列的 Spark 的 WordCount 这里主要是 从宏观上面来看一下 flink 这边的几个角色, 以及其调度的整个流程 一个宏观 大局上的任务的处理, 执行 基于 一个本地的 flink 集群 测试用例 /*** com.hx.test.Test01WordCount** author Jerry.X.He* ver…...

2024云服务器ECS_云主机_服务器托管_e实例-阿里云

阿里云服务器ECS英文全程Elastic Compute Service&#xff0c;云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;阿里云提供多种云服务器ECS实例规格&#xff0c;如ECS经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等&#xff0c;阿里云服务器网al…...

掌握这8大工具,自媒体ai写作之路畅通无阻! #经验分享#科技#媒体

这些宝藏AI 写作神器&#xff0c;我不允许你还不知道~国内外免费付费都有&#xff0c;还有AI写作小程序分享&#xff0c;大幅度提高写文章、写报告的效率&#xff0c;快来一起试试吧&#xff01; 1.元芳写作 这是一个微信公众号 面向专业写作领域的ai写作工具&#xff0c;写作…...

CTFHub技能树web之文件上传(一)

一.前置知识 文件上传漏洞&#xff1a;文件上传功能是许多Web应用程序的常见功能之一&#xff0c;但在实施不当的情况下&#xff0c;可能会导致安全漏洞。文件上传漏洞的出现可能会使攻击者能够上传恶意文件&#xff0c;执行远程代码&#xff0c;绕过访问控制等。 文件类型验证…...

蔚来面试解答

你的问题包含了多个方面&#xff0c;我会尽力逐一回答&#xff1a; 锁机制及锁膨胀过程&#xff1a; 锁机制是并发编程中用于控制多线程对共享资源访问的一种机制&#xff0c;以避免资源冲突导致的数据不一致问题。锁膨胀是指锁在运行时根据竞争情况可以升级的过程&#xff0c;…...

Springboot 中使用 Redisson+AOP+自定义注解 实现访问限流与黑名单拦截

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&…...

Java使用企业邮箱发送预警邮件

前言&#xff1a;最近接到一个需求&#xff0c;需要根据所监控设备的信息&#xff0c;在出现问题时发送企业微信进行预警。 POM依赖 <!-- 邮件 --> <dependency><groupId>com.sun.mail</groupId><artifactId>jakarta.mail</artifactId>…...

Unity编辑器扩展之是否勾选Text组件BestFit选项工具(此篇教程也可以操作其他组件的属性)

想要批量化是否勾选项目预制体资源中Text组件BestFit属性&#xff08;此篇教程也可以操作其他组件的属性&#xff0c;只不过需要修改其中对应的代码&#xff09;&#xff0c;可以采用以下步骤。 1、在项目的Editor文件中&#xff0c;新建一个名为TextBestFitBatchProcessor的…...

分布式场景怎么Join | 京东云技术团队

背景 最近在阅读查询优化器的论文&#xff0c;发现System R中对于Join操作的定义一般分为了两种&#xff0c;即嵌套循环、排序-合并联接。在原文中&#xff0c;更倾向使用排序-合并联接逻辑。 考虑到我的领域是在处理分库分表或者其他的分区模式&#xff0c;这让我开始不由得…...

24-k8s的附件组件-Metrics-server组件与hpa资源pod水平伸缩

一、概述 Metrics-Server组件目的&#xff1a;获取集群中pod、节点等负载信息&#xff1b; hpa资源目的&#xff1a;通过metrics-server获取的pod负载信息&#xff0c;自动伸缩创建pod&#xff1b; 参考链接&#xff1a; 资源指标管道 | Kubernetes https://github.com/kuberne…...

Spring RabbitMQ 配置多个虚拟主机(vhost)

文章目录 前言一、相关文章二、相关代码1.yml文件配置2.RabbitMq配置类3.接收MQ消息前言 在日常开发中,同时需要用到RabbitMQ多个虚拟机(vhost)。应用场景:需要接收多个交换机的数据,而交换机都在不同的虚拟机(vhost) 一、相关文章 Docker安装RabbitMQ 【SpringCloud…...

「Qt Widget中文示例指南」如何实现文档查看器?(一)

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写&#xff0c;所有平台无差别运行&#xff0c;更提供了几乎所有开发过程中需要用到的工具。如今&#xff0c;Qt已被运用于超过70个行业、数千家企业&#xff0c;支持数百万设备及应用。 文档查看器是一个显…...

如何创建WordPress付款表单(简单方法)

您是否正在寻找一种简单的方法来创建付款功能WordPress表单&#xff1f; 小企业主通常需要创建一种简单的方法来在其网站上接受付款&#xff0c;而无需设置复杂的购物车。简单的付款表格使您可以轻松接受自定义付款金额、设置定期付款并收集自定义详细信息。 在本文中&#x…...

虹科方案 | 释放总线潜力:汽车总线离线模拟解决方案

来源&#xff1a;虹科汽车智能互联 虹科方案 | 释放总线潜力&#xff1a;汽车总线离线模拟解决方案 原文链接&#xff1a;https://mp.weixin.qq.com/s/KGv2ZOuQMLIXlOiivvY6aQ 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; #汽车总线 #ECU #汽车网关 导读 传统的…...

欲速则不达,慢就是快!

引言 随着生活水平的提高&#xff0c;不少人的目标从原先的解决温饱转变为追求内心充实&#xff0c;但由于现在的时间过得越来越快以及其他外部因素&#xff0c;我们对很多东西的获取越来越没耐心&#xff0c;例如书店经常会看到《7天精通Java》、《3天掌握XXX》等等之类的书籍…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...