当前位置: 首页 > news >正文

大语言模型LLM中Transformer模型的调用过程与步骤

在LLM(Language Model)中,Transformer是一种用来处理自然语言任务的模型架构。下面是Transformer模型中的调用过程和步骤的简要介绍:

数据预处理:将原始文本转换为模型可以理解的数字形式。这通常包括分词、编码和填充等操作。

嵌入层(Embedding Layer):将输入的词索引转换为稠密的词向量。Transformer中,嵌入层有两个子层:位置编码和嵌入层。

编码器(Encoder):Transformer由多个编码器堆叠而成。每个编码器由两个子层组成:自注意力层(Self-Attention Layer)和前馈神经网络层(Feed-Forward Neural Network Layer)。

自注意力层:通过计算输入序列中单词之间的相互关系,为每个单词生成一个上下文相关的表示。自注意力层的输入是词嵌入和位置编码,输出是经过自注意力计算的编码。

前馈神经网络层:通过对自注意力层的输出进行一系列线性和非线性变换,得到最终的编码输出。

解码器(Decoder):与编码器类似,解码器也是多个堆叠的层,每个层由三个子层组成:自注意力层、编码器-解码器注意力层(Encoder-Decoder Attention Layer)和前馈神经网络层。

编码器-解码器注意力层:在解码器中,这一层用于获取编码器输出的信息,以帮助生成下一个单词的预测。

线性和softmax层:通过线性变换和softmax激活函数,将最终的解码器输出转换为预测的词序列。

下面是少量代码示例,展示如何在PyTorch中使用Transformer模型:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Transformerclass TransformerModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_heads, num_layers):super(TransformerModel, self).__init__()self.embedding = nn.Embedding(vocab_size, embed_dim)self.transformer = nn.Transformer(d_model=embed_dim, nhead=num_heads, num_encoder_layers=num_layers)def forward(self, src):src_embed = self.embedding(src)output = self.transformer(src_embed)return output

在LLM (Language Model) 中的Transformer模型中,通过以下步骤进行调用:

  1. 导入必要的库和模块:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
  1. 加载预训练模型和分词器:
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')

在这个例子中,我们使用了gpt2预训练模型和对应的分词器。

  1. 处理输入文本:
input_text = "输入你想要生成的文本"
input_ids = tokenizer.encode(input_text, return_tensors='pt')

使用分词器的encode方法将输入文本编码为模型可接受的输入张量。

  1. 生成文本:
outputs = model.generate(input_ids, max_length=100, num_return_sequences=5)

使用模型的generate方法生成文本。input_ids是输入张量,max_length指定生成文本的最大长度,num_return_sequences指定生成的文本序列数量。

  1. 解码生成的文本:
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

使用分词器的decode方法将模型生成的输出张量解码为文本,并打印生成的文本。

在LLM中,有几个关键的概念需要理解:

  • Logits:在生成文本时,模型会计算每个词的概率分布,这些概率分布被称为logits。模型生成的文本会基于这些logits进行采样。
  • Tokenizer:分词器将输入的连续文本序列拆分为模型能够理解的词元(tokens)。它还提供了把模型的输出转化回文本的方法。
  • Model:模型是一个神经网络,它经过预训练学习了大量的文本数据,并能够生成和理解文本。

Prompt是指在生成文本时提供给模型的初始提示。例如,给模型的输入文本是:“Once upon a time”,那么模型可能会继续生成:“there was a beautiful princess”. Prompt可以被用来引导模型生成特定的风格或内容的文本。

下面是一个完整的示例:

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')outputs = model.generate(input_ids, max_length=100, num_return_sequences=5)for output in outputs:generated_text = tokenizer.decode(output, skip_special_tokens=True)print(generated_text)

这个示例将生成以"Once upon a time"为初始提示的文本序列,并打印出5个生成的文本序列。

相关文章:

大语言模型LLM中Transformer模型的调用过程与步骤

在LLM(Language Model)中,Transformer是一种用来处理自然语言任务的模型架构。下面是Transformer模型中的调用过程和步骤的简要介绍: 数据预处理:将原始文本转换为模型可以理解的数字形式。这通常包括分词、编码和填充…...

mysql connect unblock with mysqladmin flush-hosts

原因 同一个ip在短时间内产生太多(超过max_connect_errors的最大值)中断的数据库连接而导致的阻塞。 查看 max_connect_errors show variables like max_connect_errors; 解决 前提:需要换一个IP地址连接 方法一 增大 max_connect_err…...

每日一练:前端js实现算法之两数之和

方法一&#xff1a;暴力法 function twoSum(nums, target) {for (let i 0; i < nums.length; i) {for (let j i 1; j < nums.length; j) {if (nums[i] nums[j] target) {return [i, j];}}}return null; }方法二&#xff1a;哈希表 function twoSum(nums, target) …...

17.隐式参数的定义和使用

目录 概述实践代码执行 结束 概述 实践 代码 package com.fun.scalaobject ImplicitParamsApp {def main(args: Array[String]): Unit {say("天下")implicit val word "spark"// 多个报错 // implicit val word2 "flink"implicit val con…...

简单介绍一下WebRTC中NACK机制

WebRTC中的NACK&#xff08;Negative Acknowledgement&#xff09;是一种用于实时通信的网络协议&#xff0c;用于在传输过程中检测和纠正丢包。当接收方检测到数据包丢失时&#xff0c;它会发送一个NACK消息给发送方&#xff0c;请求重新发送丢失的数据包。 NACK的工作原理如…...

05 Flink 的 WordCount

前言 本文对应于 spark 系列的 Spark 的 WordCount 这里主要是 从宏观上面来看一下 flink 这边的几个角色, 以及其调度的整个流程 一个宏观 大局上的任务的处理, 执行 基于 一个本地的 flink 集群 测试用例 /*** com.hx.test.Test01WordCount** author Jerry.X.He* ver…...

2024云服务器ECS_云主机_服务器托管_e实例-阿里云

阿里云服务器ECS英文全程Elastic Compute Service&#xff0c;云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;阿里云提供多种云服务器ECS实例规格&#xff0c;如ECS经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等&#xff0c;阿里云服务器网al…...

掌握这8大工具,自媒体ai写作之路畅通无阻! #经验分享#科技#媒体

这些宝藏AI 写作神器&#xff0c;我不允许你还不知道~国内外免费付费都有&#xff0c;还有AI写作小程序分享&#xff0c;大幅度提高写文章、写报告的效率&#xff0c;快来一起试试吧&#xff01; 1.元芳写作 这是一个微信公众号 面向专业写作领域的ai写作工具&#xff0c;写作…...

CTFHub技能树web之文件上传(一)

一.前置知识 文件上传漏洞&#xff1a;文件上传功能是许多Web应用程序的常见功能之一&#xff0c;但在实施不当的情况下&#xff0c;可能会导致安全漏洞。文件上传漏洞的出现可能会使攻击者能够上传恶意文件&#xff0c;执行远程代码&#xff0c;绕过访问控制等。 文件类型验证…...

蔚来面试解答

你的问题包含了多个方面&#xff0c;我会尽力逐一回答&#xff1a; 锁机制及锁膨胀过程&#xff1a; 锁机制是并发编程中用于控制多线程对共享资源访问的一种机制&#xff0c;以避免资源冲突导致的数据不一致问题。锁膨胀是指锁在运行时根据竞争情况可以升级的过程&#xff0c;…...

Springboot 中使用 Redisson+AOP+自定义注解 实现访问限流与黑名单拦截

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&…...

Java使用企业邮箱发送预警邮件

前言&#xff1a;最近接到一个需求&#xff0c;需要根据所监控设备的信息&#xff0c;在出现问题时发送企业微信进行预警。 POM依赖 <!-- 邮件 --> <dependency><groupId>com.sun.mail</groupId><artifactId>jakarta.mail</artifactId>…...

Unity编辑器扩展之是否勾选Text组件BestFit选项工具(此篇教程也可以操作其他组件的属性)

想要批量化是否勾选项目预制体资源中Text组件BestFit属性&#xff08;此篇教程也可以操作其他组件的属性&#xff0c;只不过需要修改其中对应的代码&#xff09;&#xff0c;可以采用以下步骤。 1、在项目的Editor文件中&#xff0c;新建一个名为TextBestFitBatchProcessor的…...

分布式场景怎么Join | 京东云技术团队

背景 最近在阅读查询优化器的论文&#xff0c;发现System R中对于Join操作的定义一般分为了两种&#xff0c;即嵌套循环、排序-合并联接。在原文中&#xff0c;更倾向使用排序-合并联接逻辑。 考虑到我的领域是在处理分库分表或者其他的分区模式&#xff0c;这让我开始不由得…...

24-k8s的附件组件-Metrics-server组件与hpa资源pod水平伸缩

一、概述 Metrics-Server组件目的&#xff1a;获取集群中pod、节点等负载信息&#xff1b; hpa资源目的&#xff1a;通过metrics-server获取的pod负载信息&#xff0c;自动伸缩创建pod&#xff1b; 参考链接&#xff1a; 资源指标管道 | Kubernetes https://github.com/kuberne…...

Spring RabbitMQ 配置多个虚拟主机(vhost)

文章目录 前言一、相关文章二、相关代码1.yml文件配置2.RabbitMq配置类3.接收MQ消息前言 在日常开发中,同时需要用到RabbitMQ多个虚拟机(vhost)。应用场景:需要接收多个交换机的数据,而交换机都在不同的虚拟机(vhost) 一、相关文章 Docker安装RabbitMQ 【SpringCloud…...

「Qt Widget中文示例指南」如何实现文档查看器?(一)

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写&#xff0c;所有平台无差别运行&#xff0c;更提供了几乎所有开发过程中需要用到的工具。如今&#xff0c;Qt已被运用于超过70个行业、数千家企业&#xff0c;支持数百万设备及应用。 文档查看器是一个显…...

如何创建WordPress付款表单(简单方法)

您是否正在寻找一种简单的方法来创建付款功能WordPress表单&#xff1f; 小企业主通常需要创建一种简单的方法来在其网站上接受付款&#xff0c;而无需设置复杂的购物车。简单的付款表格使您可以轻松接受自定义付款金额、设置定期付款并收集自定义详细信息。 在本文中&#x…...

虹科方案 | 释放总线潜力:汽车总线离线模拟解决方案

来源&#xff1a;虹科汽车智能互联 虹科方案 | 释放总线潜力&#xff1a;汽车总线离线模拟解决方案 原文链接&#xff1a;https://mp.weixin.qq.com/s/KGv2ZOuQMLIXlOiivvY6aQ 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; #汽车总线 #ECU #汽车网关 导读 传统的…...

欲速则不达,慢就是快!

引言 随着生活水平的提高&#xff0c;不少人的目标从原先的解决温饱转变为追求内心充实&#xff0c;但由于现在的时间过得越来越快以及其他外部因素&#xff0c;我们对很多东西的获取越来越没耐心&#xff0c;例如书店经常会看到《7天精通Java》、《3天掌握XXX》等等之类的书籍…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...