当前位置: 首页 > news >正文

多模态相关论文笔记

(cilp) Learning Transferable Visual Models From Natural Language Supervision

从自然语言监督中学习可迁移的视觉模型
openAI 2021年2月 48页
PDF
CODE
CLIP(Contrastive Language-Image Pre-Training)对比语言图像预训练模型

引言

它比ImageNet模型效果更好,计算效率更高。尤其是zero-shot能力更强。

方法

选择一个高效的预训练策略

最初的想法类似于VirTex,联合训练一个图像CNN和文本Transformer预测一张图片的标题。但是很难预测到最准确的词汇。因此将预测目标函数改为了对比目标函数。

给定一个batch里的N个图文对(图片,文本),CLIP用来预测N×N个实际可能发生的图文对。为此,CLIP通过联合训练图片编码器和文本编码器学习了一个多模态的embedding空间,来最大化这N个真实图文对中图片和文本embedding之间的cosine相似度,同时最小化错误对的cosine相似度。损失函数:SCE 对称交叉熵
只使用了一个线性投影将各编码器表示汇集到多模态embedding空间中。简化了很多模块。架构图如图所示。

伪代码:

# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, l] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

选择和裁剪模型

图片编码器-ResNet-50 或者 ViT,并做了些修改
文本编码器-Transformer

训练

训练32轮
Adam

相关文章:

多模态相关论文笔记

(cilp) Learning Transferable Visual Models From Natural Language Supervision 从自然语言监督中学习可迁移的视觉模型 openAI 2021年2月 48页 PDF CODE CLIP(Contrastive Language-Image Pre-Training)对比语言图像预训练模型 引言 它比ImageNet模型效果更好&#xff0c…...

maven 打包命令

Maven是基于项目对象模型(POM project object model),可以通过一小段描述信息(配置)来管理项目的构建,报告和文档的软件项目管理工具。 Maven的核心功能便是合理叙述项目间的依赖关系,通俗点讲,就是通过po…...

开源模型应用落地-业务优化篇(六)

一、前言 经过线程池优化、请求排队和服务实例水平扩容等措施,整个AI服务链路的性能得到了显著地提升。但是,作为追求卓越的大家,绝不会止步于此。我们的目标是在降低成本和提高效率方面不断努力,追求最佳结果。如果你们在实施AI项目方面有经验,那一定会对GPU服务器的高昂…...

编程笔记 Golang基础 015 数据类型:布尔类型

编程笔记 Golang基础 015 数据类型:布尔类型 在Go语言中,布尔类型(bool)是一种基本数据类型,用于表示逻辑值,即真或假、是或否的情况。它主要用于条件判断和逻辑运算。 定义与取值: Go语言中的布…...

腾讯云OSS文件上传功能

腾讯云COS介绍 腾讯云COS(Cloud Object Storage)是一种基于对象的存储服务,用于存储和管理海量的非结构化数据,如图片、音视频文件、备份数据等。它具有以下特点和优势: 高可靠性:采用分布式存储架构&…...

2023 re:Invent 用 PartyRock 10 分钟构建你的 AI 应用

前言 一年一度的亚马逊云科技的 re:Invent 可谓是全球云计算、科技圈的狂欢,每次都能带来一些最前沿的方向标,这次也不例外。在看完一些 keynote 和介绍之后,我也去亲自体验了一些最近发布的内容。其中让我感受最深刻的无疑是 PartyRock 了。…...

如何使用idea连接服务器上的mysql?

安全组进行开放 具体步骤 关闭防火墙 开放端口号 重启防火墙 firewall-cmd --reload在mysql进行修改配置 update user set host % where user root;flush privileges;使得其他网络也可以连接这个数据库 另外如果想要sqlyog或者其他图形化界面要连接到数据库可以看下面这…...

主流开发语言和开发环境介绍

主流开发语言和开发环境介绍文章目录 ⭐️ 主流开发语言:2024年2月编程语言排行榜(TIOBE前十)⭐️ 主流开发语言开发环境介绍1.Python1.1 **IDLE**1.2 **PyCharm**1.3 **Anaconda**1.4 **Jupyter Notebook**1.5 **Sublime Text** 2.C2.1 **De…...

samber/lo 库的使用方法: 处理 channel

samber/lo 库的使用方法: 处理 channel samber/lo 是一个 Go 语言库,提供了一些常用的集合操作函数,如 Filter、Map 和 FilterMap。汇总目录页面 这个库函数太多,因此我决定按照功能分别介绍,本文介绍的是 samber/lo…...

铌酸锂芯片与精密划片机:科技突破引领半导体制造新潮流

在当今快速发展的半导体行业中,一种结合了铌酸锂芯片与精密划片机的创新技术正在崭露头角。这种技术不仅引领着半导体制造领域的进步,更为其他产业带来了前所未有的变革。 铌酸锂芯片是一种新型的微电子芯片,它使用铌酸锂作为基底材料&#x…...

大数据计算技术秘史(上篇)

在之前的文章《2024 年,一个大数据从业者决定……》《存储技术背后的那些事儿》中,我们粗略地回顾了大数据领域的存储技术。在解决了「数据怎么存」之后,下一步就是解决「数据怎么用」的问题。 其实在大数据技术兴起之前,对于用户…...

论文精读--word2vec

word2vec从大量文本语料中以无监督方式学习语义知识,是用来生成词向量的工具 把文本分散嵌入到另一个离散空间,称作分布式表示,又称为词嵌入(word embedding)或词向量 Abstract We propose two novel model architec…...

Android13 针对low memory killer内存调优

引入概念 在旧版本的安卓系统中,当触发lmk(low memory killer)的时候一般认为就是内存不足导致,但是随着安卓版本的增加lmk的判断标准已经不仅仅是内存剩余大小,io,cpu同样会做评判,从而保证设备…...

【深入理解设计模式】 工厂设计模式

工厂设计模式 工厂设计模式是一种创建型设计模式,它提供了一种在不指定具体类的情况下创建对象的接口。在工厂设计模式中,我们定义一个创建对象的接口,让子类决定实例化哪一个类。工厂方法使一个类的实例化延迟到其子类。 工厂设计模式的目…...

Windows下搭建EFK实例

资源下载 elasticSearch :下载最新版本的就行 kibana filebeat:注意选择压缩包下载 更新elasticsearch.yml,默认端口9200: # Elasticsearch Configuration # # NOTE: Elasticsearch comes with reasonable defaults for most …...

工厂方法模式Factory Method

1.模式定义 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使得一个类的实例化延迟到子类 2.使用场景 1.当你不知道改使用对象的确切类型的时候 2.当你希望为库或框架提供扩展其内部组件的方法时 主要优点: 1.将具体产品和创建…...

Vue的个人笔记

Vue学习小tips ctrl s ----> 运行 alt b <scrip> 链接 <script src"https://cdn.jsdelivr.net/npm/vue2.7.16/dist/vue.js"></script> 插值表达式 指令...

linux platform架构下I2C接口驱动开发

目录 概述 1 认识I2C协议 1.1 初识I2C 1.2 I2C物理层 1.3 I2C协议分析 1.3.1 Start、Stop、ACK 信号 1.3.2 I2C协议的操作流程 1.3.3 操作I2C注意的问题 2 linux platform驱动开发 2.1 更新设备树 2.1.1 添加驱动节点 2.1.2 编译.dts 2.1.3 更新板卡中的.dtb 2.2 …...

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022 摘要关键词 1 材料和方法1.1 研究区概况与数据来源1.2 研究方法 2 结果和分析2.1 蒸散发通量观测数据缺省状况2.2 蒸散发与气象因子的相关性分析2.3 不同气象因子输入组合下各模型算法精度对比2.4 随机森林回归模…...

Failed at the node-sass@4.14.1 postinstall script.

问题描述 安装sass # "node-sass": "^4.9.0" npm i node-sass报错如下 npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! node-sass4.14.1 postinstall: node scripts/build.js npm ERR! Exit status 1 npm ERR! npm ERR! Failed at the node-sass4…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...