2023 re:Invent 用 PartyRock 10 分钟构建你的 AI 应用
前言
一年一度的亚马逊云科技的 re:Invent 可谓是全球云计算、科技圈的狂欢,每次都能带来一些最前沿的方向标,这次也不例外。在看完一些 keynote 和介绍之后,我也去亲自体验了一些最近发布的内容。其中让我感受最深刻的无疑是 PartyRock 了。PartyRock 真的算是做到了:能让任何人快速的构建一个属于自己的 AI 应用。当然,本文最后也分享我对于其他在 re:Invent 上提到的一些看法和思考。
那么,不多说,先来看看今天的主角 PartyRock。
亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!
PartyRock 简介
Everyone can build AI apps.
这句话是 PartyRock 首页的一句话,它就是 PartyRock 的最好的功能概括了。
去年到今年 AI 相关的应用层出不穷,GEN AI 已经太多了。到目前为止,其实我本人已经有点审美疲劳了,因为该看的都看的差不多了,所以说实话体验之前,我并没有对 PartyRock 带有很大期望,最多是体验完了之后厚脸皮来一句 “不过如此”。结果体验完成之后发现我说的是:
使用体验
下面我就用我自己制作的两个应用和一个官方的应用来说明一下它的使用体验。
构建第一个应用 - 选词填空
制作的过程其实非常简单,几乎 10 分钟就搞定了。
步骤 1
点击创建应用之后,在它给出的输入框里面输入你想要做的应用的功能描述,比如说,我最近在学英语,我第一想法就是做个选词填空的应用出来,于是我就在 App builder 的输入框里面输入如下的内容,然后点击 Generate app 就开始生成了。
步骤 2
根据生成的内容,你自己按需求修改一下描述和内容,这里最后下方的答案输入部分我做了一些提示词的修改,其他我也就没动了。
步骤 3
然后就可以测试一下了,在第一个框 ( Words to choose from ) 输入一些单词,在右边 ( Sentences ) 就会生成对应的题目。
然后你可以在下面 ( Answer ) 作答并验证答案是否正确。
整个过程,需要我动脑的地方就是在想我应该如何描述我的应用,实际生成的效果很不错,我很满意。
构建第二个应用 - 扩写生成图片
第一个应用我们是依赖的 AI 直接帮我们生成的,虽然很简单,但是对于我们开发者来说,与其去想描述,不如直接动手来的快。于是这次我们从零开始(选择 “ Start from an empty app ” 选项),自己搭建一个应用试试看。这次我想试试有关于图片生成的能力,对于 AI 生成图片来说最麻烦的是写描述词,于是我想让 AI 先帮我扩写,然后再利用扩写的内容去生成图片。
步骤 1
第一步添加 widget ,其实我们在上面看到的一个输入框就是一个 widget ,目前 PartyRock
提供了下面几种可以使用的 widget 。
我们需要 3 个 widget,一个用户输入 ( User Input ) ,一个文本生成 ( Text Generation ) ,一个图片生成 ( Image Generation ) 。
步骤 2
然后,我们就需要编写 AI 生成的提示词了,点击每个 widget 右上角的编辑,就可以输入对应的提示词,还可以选择不同的模型。其中最重要的是,你可以使用 @ 符合直接引用其他 widget 生成的内容,比如,我需要根据用户输入的内容进行扩写,那么我在提示词里面就可以直接引用用户输入的部分;比如,我想根据扩写的内容生成图片,我就可以利用 “ @Description ” 引用扩写的内容。如下图 Prompt 中高亮的部分。
步骤 3
测试一下,下图就是我输入的一句描述,经过扩写最后生成了图片,当然模型不同最后效果也不一样。
此时你就可以发布你的应用了。
ChatRPG
让我觉得最巧妙的一个应用,是官方给出的 ChatRPG 。这个应用利用了 AI 对话的功能来完成了一个对话形式的 RPG 游戏,你可以通过对话的形式选择不同的路径 ( A B C ) 来获得不同的结局,并且最为巧妙的是,它利用了几个 AI 的联动,整个 RPG 的过程会生成不同的场景图片,让整个游戏的过程更加有了带入感觉。
精妙的地方
说完了体验,来说说 PartyRock 精妙的地方。
- AI build AI : 第一点我觉得妙的地方是自举,也就是自己构建自己,利用 AI 的能力去构建 AI 应用本身。一方面体现 AI 本身的能力强大,另一方面让也大大降低了入门的门槛,让小白用户也能快速上手。
- remix:PartyRock 提供了 remix 的功能,你可以直接复制( remix )一个别人已经发布的应用,直接修改里面的参数或者提示词来完成你的应用。这无疑是最快的创建应用的一种方式了。
- 引用变量:这我觉得是 PartyRock 的灵魂,通过@引用其他 AI 完成的工作,从而实现不同 AI 之间的联动。你甚至可以通过这样的方式构建一个自己的工作流,让 AI 进行协作,让需要来回对话好几次的事情一步到位。现在提供的 widget 还比较少,我觉得随着后面的更新,当 widget 有很多的时候会碰撞出更多的火花。同时,这也给我们提供了一个不同 AI 之间协作的一个不错思路,我觉得这样的思路带给我的思考比产品本身还有意思。
其他产品
当然,这次 re:Invent 提到了其他很多的产品和思考,这里就对其中几个我非常感兴趣的产品谈谈我的拙见。
Serverless
我关注最多的一定是 serverless ,我一直都觉得 serverless 一直一种对开发友好也对运维友好的结局方案。而这次 re:Invent 发布的 Amazon ElastiCache Serverless
让我也有了新的思考。Amazon ElastiCache Serverless
是根据应用程序流量模式自动的扩展容量的缓存服务,而对于缓存这样的热点数据来说,有过实际业务场景的同学都知道如果 Redis 突然内存满了是一种什么样的体验。而 ElastiCache 的自适应压力的工作负载模式可以很好的解决这个问题,而且兼容 Redis。
产品本身的意义很大,而带给我的思考是,在未来是否当 serverless 足够成熟之后是否会出现一直数据源的集合产品,自动会根据数据的访问情况来自动路由到对应合理的存储模式中呢?比如,热点数据会自动路由到 cache 而平常数据路由到 mysql,而冷数据当到达 “冰点” 时自动归档以减少消耗?而对于上层应用来说使用完全透明?当然里面的问题很多,不过我觉得随着 serverless 的发展或许这也是可以想象的。
AI
Amazon Bedrock 、Amazon CodeWhisperer 和 Amazon Q 是这次 re:Invent 提到有关 AI 的一些产品。比如本文提到的 PartyRock 应该就是建立在 Amazon Bedrock 之上的。当然,我也第一时间去试用了一下 Amazon CodeWhisperer 和 Amazon Q ,不过给我的感觉还没有那么的惊艳,或许是还在 beta 阶段,智能程度一般,相信体验过的小伙伴感受也差不多。而且由于目前支持的开发语言还不多(我常用的 golang 还没有)。
不过,re:Invent 上一直强调了另一个有关 AI 的关键点就是,安全。“ 生成式 AI 一定应该是安全的 ”。这里的安全有两个方面,一方面是生成的内容一定应该是安全的,不能出现违法的内容;另一方面是作为模型基础的训练数据应该是安全的。比如,企业内部基于自己内部代码和数据来建立的模型,进行使用,对应的数据不应该被公开或者出现在别的人生成内容中。所以,安全应该是未来 AI 前进的基石。
我在体验 PartyRock 的时候也发现了下面的提示,如果出现不安全的单词,图片是不会生成的:
THE FRUGAL ARCHITECT
亚马逊 CTO Werner Vogels 博士今年在 re:Invent 上的主题演讲提到了 THE FRUGAL ARCHITECT(节俭/节制架构)。提到了成本应该在架构设计之初就应该被考虑进去,并且一直作为一个考量指标。
去年到今年一个词在国内大厂一直被提及 “降本增效”,结果最近演变成为了 “降本增笑”。是的,由于成本的缩减,往往带来的就是服务的不稳定,这是所有工程师都不想见到的。我就想到之前听到一个说法是,如果一个并发问题能通过加服务器来解决,那么领导会更愿意通过加服务器来解决而不是重构代码,因为养开发的成本往往高于服务器。而我也经历过一次 k8s 的降本,虽然有时候确实是因为 request 设置的不合理导致的成本超标,但实际改起来的时候真的是心惊肉跳,因为你真的不知道这个服务的并发明天会不会就坐火箭。所以,成本、安全、性能 一直都是一种权衡(trade off),用流行的话说就是 “并不是我不知道两地三中心安全,而是单中心更有性价比😭”。
其实,有时候并不是不考虑,而是无法预估流量的大小,谁都也无法预测你的应用什么时候会火。所以亚马逊云科技提供的 Lambda,ElastiCache 都是那种按成本去设计的。而对于上云来说最大的一个问题就是成本不可控,随着服务的类型越来越多,并且很多服务都是按量付费,预算与实际往往会有比较大的差异。所以,最让我感兴趣的是,这次 Werner Vogels 提到的 Management Console 内可以展示应用级别的成本,之前我们可能只能知道某个使用的服务成本很贵,而现在我们能知道具体那个应用在使用的成本最大。这种观测能力对于使用者来说是更加友好的,我能最大程度的去观测我的应用成本的占比,从而精准的控制我的成本,而不是盲目的去找压力。
总之,在我认为 THE FRUGAL ARCHITECT ,给我的思考是你必须有能力去时刻关注成本,无法观测的系统将导致无法估量的成本。
总结
最后总结一下,这次 re:Invent 不仅给我们展示了一些最新的应用和服务,更多的给我们带来了一些亚马逊云科技对于最新技术方向的一些思考,接触这些前沿技术给我的架构解决方案又多了一些积累,相信明年的大会也会一样精彩。
文章来源:
https://dev.amazoncloud.cn/column/article/658965055d096603bb1874b2?sc_medium=regulartraffic&sc_campaign=crossplatform&sc_channel=CSDN
相关文章:

2023 re:Invent 用 PartyRock 10 分钟构建你的 AI 应用
前言 一年一度的亚马逊云科技的 re:Invent 可谓是全球云计算、科技圈的狂欢,每次都能带来一些最前沿的方向标,这次也不例外。在看完一些 keynote 和介绍之后,我也去亲自体验了一些最近发布的内容。其中让我感受最深刻的无疑是 PartyRock 了。…...

如何使用idea连接服务器上的mysql?
安全组进行开放 具体步骤 关闭防火墙 开放端口号 重启防火墙 firewall-cmd --reload在mysql进行修改配置 update user set host % where user root;flush privileges;使得其他网络也可以连接这个数据库 另外如果想要sqlyog或者其他图形化界面要连接到数据库可以看下面这…...

主流开发语言和开发环境介绍
主流开发语言和开发环境介绍文章目录 ⭐️ 主流开发语言:2024年2月编程语言排行榜(TIOBE前十)⭐️ 主流开发语言开发环境介绍1.Python1.1 **IDLE**1.2 **PyCharm**1.3 **Anaconda**1.4 **Jupyter Notebook**1.5 **Sublime Text** 2.C2.1 **De…...
samber/lo 库的使用方法: 处理 channel
samber/lo 库的使用方法: 处理 channel samber/lo 是一个 Go 语言库,提供了一些常用的集合操作函数,如 Filter、Map 和 FilterMap。汇总目录页面 这个库函数太多,因此我决定按照功能分别介绍,本文介绍的是 samber/lo…...

铌酸锂芯片与精密划片机:科技突破引领半导体制造新潮流
在当今快速发展的半导体行业中,一种结合了铌酸锂芯片与精密划片机的创新技术正在崭露头角。这种技术不仅引领着半导体制造领域的进步,更为其他产业带来了前所未有的变革。 铌酸锂芯片是一种新型的微电子芯片,它使用铌酸锂作为基底材料&#x…...

大数据计算技术秘史(上篇)
在之前的文章《2024 年,一个大数据从业者决定……》《存储技术背后的那些事儿》中,我们粗略地回顾了大数据领域的存储技术。在解决了「数据怎么存」之后,下一步就是解决「数据怎么用」的问题。 其实在大数据技术兴起之前,对于用户…...

论文精读--word2vec
word2vec从大量文本语料中以无监督方式学习语义知识,是用来生成词向量的工具 把文本分散嵌入到另一个离散空间,称作分布式表示,又称为词嵌入(word embedding)或词向量 Abstract We propose two novel model architec…...

Android13 针对low memory killer内存调优
引入概念 在旧版本的安卓系统中,当触发lmk(low memory killer)的时候一般认为就是内存不足导致,但是随着安卓版本的增加lmk的判断标准已经不仅仅是内存剩余大小,io,cpu同样会做评判,从而保证设备…...

【深入理解设计模式】 工厂设计模式
工厂设计模式 工厂设计模式是一种创建型设计模式,它提供了一种在不指定具体类的情况下创建对象的接口。在工厂设计模式中,我们定义一个创建对象的接口,让子类决定实例化哪一个类。工厂方法使一个类的实例化延迟到其子类。 工厂设计模式的目…...

Windows下搭建EFK实例
资源下载 elasticSearch :下载最新版本的就行 kibana filebeat:注意选择压缩包下载 更新elasticsearch.yml,默认端口9200: # Elasticsearch Configuration # # NOTE: Elasticsearch comes with reasonable defaults for most …...

工厂方法模式Factory Method
1.模式定义 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使得一个类的实例化延迟到子类 2.使用场景 1.当你不知道改使用对象的确切类型的时候 2.当你希望为库或框架提供扩展其内部组件的方法时 主要优点: 1.将具体产品和创建…...

Vue的个人笔记
Vue学习小tips ctrl s ----> 运行 alt b <scrip> 链接 <script src"https://cdn.jsdelivr.net/npm/vue2.7.16/dist/vue.js"></script> 插值表达式 指令...

linux platform架构下I2C接口驱动开发
目录 概述 1 认识I2C协议 1.1 初识I2C 1.2 I2C物理层 1.3 I2C协议分析 1.3.1 Start、Stop、ACK 信号 1.3.2 I2C协议的操作流程 1.3.3 操作I2C注意的问题 2 linux platform驱动开发 2.1 更新设备树 2.1.1 添加驱动节点 2.1.2 编译.dts 2.1.3 更新板卡中的.dtb 2.2 …...

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022
基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022 摘要关键词 1 材料和方法1.1 研究区概况与数据来源1.2 研究方法 2 结果和分析2.1 蒸散发通量观测数据缺省状况2.2 蒸散发与气象因子的相关性分析2.3 不同气象因子输入组合下各模型算法精度对比2.4 随机森林回归模…...
Failed at the node-sass@4.14.1 postinstall script.
问题描述 安装sass # "node-sass": "^4.9.0" npm i node-sass报错如下 npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! node-sass4.14.1 postinstall: node scripts/build.js npm ERR! Exit status 1 npm ERR! npm ERR! Failed at the node-sass4…...

【鸿蒙系统学习笔记】网络请求
一、介绍 资料来自官网:文档中心 网络管理模块主要提供以下功能: HTTP数据请求:通过HTTP发起一个数据请求。WebSocket连接:使用WebSocket建立服务器与客户端的双向连接。Socket连接:通过Socket进行数据传输。 日常…...

LabVIEW风力机智能叶片控制系统
LabVIEW风力机智能叶片控制系统 介绍了一种风力机智能叶片控制系统的开发。通过利用LabVIEW软件与CDS技术,该系统能够实时监测并调整风力机叶片的角度,优化风能转换效率。此项技术不仅提高了风力发电的稳定性和效率,而且为风力机的智能化管…...
HarmonyOS Stage模型 权限申请
配置声明权限 在module.json5配置文件中声明权限。不论是system_grant还是user_grant类型都需要声明权限,否则应用将无法获得授权。 {"module" : {// ..."requestPermissions":[{"name": "ohos.permission.DISCOVER_BLUETOOTH…...
标题:从预编译到链接:探索C/C++程序的翻译环境全貌
引言 在软件开发的世界里,我们通常会遇到两种不同的环境——翻译环境与运行环境。今天,我们将聚焦于前者,深入剖析C/C程序生命周期中至关重要的“翻译环境”,即从源代码到可执行文件这一过程中涉及的四个关键阶段:预编…...

深入理解单端模拟多路复用器DG406DW-E3 应用于高速数据采集、ATE系统和航空电子设备解决方案
DG406DW-E3是一款16通道单端模拟多路复用器设计用于将16个输入中的一个连接到公共端口由4位二进制地址确定的输出。应用包括高速数据采集、音频信号切换和路由、ATE系统和航空电子设备。高性能低功耗损耗使其成为电池供电和电池供电的理想选择远程仪器应用。采用44V硅栅CMOS工艺…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...