压缩感知常用的重建算法
重建算法的基本概念
在压缩感知(Compressed Sensing, CS)框架中,重建算法是指将从原始信号中以低于奈奎斯特率采集得到的压缩测量值恢复成完整信号的数学和计算过程。由于信号在采集过程中被压缩,因此重建算法的目标是找到最符合测量值的稀疏信号表示。
重建算法的作用
重建算法的核心任务是解决一个逆问题:在知道部分信息的情况下(即压缩感知测量值),如何恢复出完整的信号信息。这个问题往往是不适定的,因为可能存在多个信号与同一组测量值相对应。因此,重建算法需要依赖于信号的稀疏性属性来实现唯一或近似唯一的解。
重建算法的使用形式
重建算法通常需要针对待解决的优化问题进行设计,这个问题一般形式化为一个最小化问题,其中包含一个代表测量误差的范数项和一个代表稀疏性的范数项。其中,l0
范数是衡量向量中非零元素个数的范数,它能够精确描述稀疏性,但相关优化问题通常是NP难的;l1
范数是向量元素绝对值之和,它是l0
范数的最佳凸近似,可以通过凸优化方法求解。
常见的重建算法
-
基追踪(Basis Pursuit, BP)
- BP算法寻求最小化
l1
范数的解,它将l0
最小化问题转化为l1
最小化问题。BP通常通过线性规划或凸优化算法来解决。
- BP算法寻求最小化
-
匹配追踪(Matching Pursuit, MP)和正交匹配追踪(Orthogonal Matching Pursuit, OMP)
- MP和OMP是贪婪算法,逐步选择与残差最匹配的字典原子(基向量),OMP在每个步骤中还会对已选原子集合做正交化处理。这些算法相对简单,计算效率高,尤其适合于信号非常稀疏的情况。
-
迭代阈值算法(Iterative Thresholding)
- 这类算法通过交替执行阈值操作和数据保真度更新。它们简单、易于实施,并且可以很自然地并行化。
-
压缩感知重建算法(Compressive Sampling Matching Pursuit, CoSaMP)和迭代硬阈值算法(Iterative Hard Thresholding, IHT)
- CoSaMP和IHT是迭代算法,它们通过迭代精修解决方案来提高重建精度。CoSaMP在每次迭代中选择多个原子,并利用最小二乘法更新解决方案。
-
稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)
- SBL是一种基于概率模型的方法,通过引入先验知识和贝叶斯推断框架来估计稀疏信号。它可以提供比其他技术更准确的估计,但计算复杂度较高。
-
总变分最小化(Total Variation Minimization, TVM)
- TVM特别适用于图像重建,它利用图像中像素值变化的稀疏性,通过最小化图像的总变分(像素值差的
l1
范数)来恢复信号。
- TVM特别适用于图像重建,它利用图像中像素值变化的稀疏性,通过最小化图像的总变分(像素值差的
-
最小绝对收缩和选择算子(Least Absolute Shrinkage and Selection Operator, LASSO)
- LASSO是一种结合了稀疏性和正则化的方法,通过在最小化问题中增加一个
l1
范数惩罚项,求解能同时满足数据保真和稀疏性的解。
- LASSO是一种结合了稀疏性和正则化的方法,通过在最小化问题中增加一个
结论
每种重建算法都有它的优势和适用场景。在实际应用中,BP算法提供了理论上的性能保证,但在大规模问题上可能会受限于计算效率;OMP和其它贪婪算法则在计算效率和实施简单性上具有优势;迭代算法如CoSaMP和IHT在恢复精度和算法稳定性方面表现良好;SBL提供了精确的估计,但在计算上更为复杂;TVM在图像处理中特别有用;LASSO在统计学习和模型选择中有着广泛应用。选择合适的重建算法需要考虑信号的具体特性、问题的规模和计算资源。未来的研究将继续在理论性能、计算效率和应用的广泛性之间寻找最佳平衡点。
相关博文
理解并实现OpenCV中的图像平滑技术
OpenCV中的边缘检测技术及实现
OpenCV识别人脸案例实战
入门OpenCV:图像阈值处理
我的图书
下面两本书欢迎大家参考学习。
OpenCV轻松入门
李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。
在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。
本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
计算机视觉40例
李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。
相关文章:

压缩感知常用的重建算法
重建算法的基本概念 在压缩感知(Compressed Sensing, CS)框架中,重建算法是指将从原始信号中以低于奈奎斯特率采集得到的压缩测量值恢复成完整信号的数学和计算过程。由于信号在采集过程中被压缩,因此重建算法的目标是找到最符合…...

c语言经典测试题2
1.题1 我们来思考一下它的结果是什么? 我们来分析一下:\\是转义为字符\,\123表示的是一个八进制,算一个字符,\t算一个字符,加上\0,应该有13个,但是strlen只计算\0前的字符个数。所以…...

⭐北邮复试刷题105. 从前序与中序遍历序列构造二叉树__递归分治 (力扣每日一题)
105. 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,7], inorder [9,3,15,…...

机房预约系统(个人学习笔记黑马学习)
1、机房预约系统需求 1.1系统简介 学校现有几个规格不同的机房,由于使用时经常出现“撞车“现象,现开发一套机房预约系统,解决这一问题。 1.2身份简介 分别有三种身份使用该程序 学生代表:申请使用机房教师:审核学生的预约申请管理员:给学生、教师创建账…...
7、内网安全-横向移动PTH哈希PTT票据PTK密匙Kerberos密码喷射
用途:个人学习笔记,有所借鉴,欢迎指正 目录 一、域横向移动-PTH-Mimikatz&NTLM 1、Mimikatz 2、impacket-at&ps&wmi&smb 二、域横向移动-PTK-Mimikatz&AES256 三、域横向移动-PTT-漏洞&Kekeo&Ticket 1、漏…...

【前端】夯实基础 css/html/js 50个练手项目(持续更新)
文章目录 前言Day 1 expanding-cardsDay 2 progress-steps 前言 发现一个没有用前端框架的练手项目,很适合我这种纯后端开发夯实基础,内含50个mini project,学习一下,做做笔记。 项目地址:https://github.com/bradtr…...

ELK入门(四)-logstash
Logstash Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的存储库中。 Logstash 能够动态地采集、转换和传输数据,不受格式或复杂度的影响。利用 Grok 从非结构化数据中…...
laravel-admin的3个开发细节调整
在使用laravel-admin开发的过程中,根据官方开发文档Laravel admin | laravel-admin基本都能实现想要的效果,这里补充3个文档上没有描述的细节 Laravel8命令行创建控制器调整 在laravel-admin中可以使用php artisan admin:make UserController --modelAp…...

Redis--原理篇-数据结构(底层)
Redis数据结构 动态字符串SDS IntSet 统一大小并且内存地址连续 为了方便寻址 Dict 基本结构 扩容 收缩 Ziplist(P150 后半部分再看) Quicklist skiplist(满足中间查询 RedisObject...

OpenAI发布Sora模型,可根据文字生成逼真AI视频
早在2022年11月30日,OpenAI第一次发布人工智能聊天机器人ChatGPT,随后在全世界掀起了人工智能狂潮,颠覆了一个又一个行业。在过去的一年多的时间里,chatGPT的强大功能改变了越来越多人的工作和生活方式,成为了世界上用…...

视频生成模型:构建虚拟世界的模拟器 [译]
原文:Video generation models as world simulators 我们致力于在视频数据上开展生成模型的大规模训练。具体来说,我们针对不同时长、分辨率和宽高比的视频及图像,联合训练了基于文本条件的扩散模型。我们采用了一种 Transformer 架构&#…...

MySQL数据库基础(十二):子查询(三步走)
文章目录 子查询(三步走) 一、子查询(嵌套查询)的介绍 二、子查询的使用 三、总结 子查询(三步走) 一、子查询(嵌套查询)的介绍 在一个 select 语句中,嵌入了另外一个 select …...

2-21算法习题总结
由于蓝桥杯的题,我不知道从怎么复制,就只能粘贴图片了 翻硬币 代码 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);String start sc.next();char[] starts start.toCharArray();String end sc…...

常见的排序算法整理
1.冒泡排序 1.1 冒泡排序普通版 每次冒泡过程都是从数列的第一个元素开始,然后依次和剩余的元素进行比较,若小于相邻元素,则交换两者位置,同时将较大元素作为下一个比较的基准元素,继续将该元素与其相邻的元素进行比…...

stm32——hal库学习笔记(定时器)
这里写目录标题 一、定时器概述(了解)1.1,软件定时原理1.2,定时器定时原理1.3,STM32定时器分类1.4,STM32定时器特性表1.5,STM32基本、通用、高级定时器的功能整体区别 二、基本定时器࿰…...
方法鉴权:基于 Spring Aop 的注解鉴权
在Spring框架中,可以使用面向切面编程(AOP)来实现注解鉴权。这通常涉及到定义一个切面(Aspect),该切面会在方法执行前进行拦截,并根据注解value值来决定是否允许执行该方法。 简单思路…...
多模态相关论文笔记
(cilp) Learning Transferable Visual Models From Natural Language Supervision 从自然语言监督中学习可迁移的视觉模型 openAI 2021年2月 48页 PDF CODE CLIP(Contrastive Language-Image Pre-Training)对比语言图像预训练模型 引言 它比ImageNet模型效果更好,…...

maven 打包命令
Maven是基于项目对象模型(POM project object model),可以通过一小段描述信息(配置)来管理项目的构建,报告和文档的软件项目管理工具。 Maven的核心功能便是合理叙述项目间的依赖关系,通俗点讲,就是通过po…...
开源模型应用落地-业务优化篇(六)
一、前言 经过线程池优化、请求排队和服务实例水平扩容等措施,整个AI服务链路的性能得到了显著地提升。但是,作为追求卓越的大家,绝不会止步于此。我们的目标是在降低成本和提高效率方面不断努力,追求最佳结果。如果你们在实施AI项目方面有经验,那一定会对GPU服务器的高昂…...
编程笔记 Golang基础 015 数据类型:布尔类型
编程笔记 Golang基础 015 数据类型:布尔类型 在Go语言中,布尔类型(bool)是一种基本数据类型,用于表示逻辑值,即真或假、是或否的情况。它主要用于条件判断和逻辑运算。 定义与取值: Go语言中的布…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...