当前位置: 首页 > news >正文

四、分类算法 - 朴素贝叶斯算法

目录

1、朴素贝叶斯算法

1.1 案例

1.2 联合概率、条件概率、相互独立

1.3 贝叶斯公式

1.4 朴素贝叶斯算法原理

1.5 应用场景

2、朴素贝叶斯算法对文本进行分类

2.1 案例

2.2 拉普拉斯平滑系数

3、API

4、案例:20类新闻分类

4.1 步骤分析

4.2 代码分析

5、总结


  1. sklearn转换器和估算器
  2. KNN算法
  3. 模型选择和调优
  4. 朴素贝叶斯算法
  5. 决策树
  6. 随机森林

1、朴素贝叶斯算法

朴素?

假设:特征与特征之间是相互独立的

1.1 案例

1.2 联合概率、条件概率、相互独立

1.3 贝叶斯公式

1.4 朴素贝叶斯算法原理

朴素 + 贝叶斯

1.5 应用场景

  • 文本分类(单词作为特征)

2、朴素贝叶斯算法对文本进行分类

2.1 案例

2.2 拉普拉斯平滑系数

3、API

4、案例:20类新闻分类

4.1 步骤分析

  • 获取数据
  • 划分数据集
  • 特征工程  --文本特征抽取
  • 朴素贝叶斯预估器流程
  • 模型评估

4.2 代码分析

from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScalerdef knn_iris():# 用KNN 算法对鸢尾花进行分类# 1、获取数据iris = load_iris()# 2、划分数据集x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)# 3、特征工程 - 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4、KNN 算法预估器estimator = KNeighborsClassifier(n_neighbors=3)estimator.fit(x_train,y_train)# 5、模型评估# 方法1 :直接比对真实值和预测值y_predict = estimator.predict(x_test)print("y_predict:\n",y_predict)print("直接比对真实值和预测值:\n",y_test == y_predict)# 方法2:计算准确率score = estimator.score(x_test,y_test)print("准确率为:\n",score)return Nonedef knn_iris_gscv():# 用KNN 算法对鸢尾花进行分类,添加网格搜索和交叉验证# 1、获取数据iris = load_iris()# 2、划分数据集x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)# 3、特征工程 - 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4、KNN 算法预估器estimator = KNeighborsClassifier()# 加入网格搜索和交叉验证# 参数准备param_dict = {"n_neighbors":[1,3,5,7,9,11]}estimator = GridSearchCV(estimator,param_grid=param_dict,cv=10)estimator.fit(x_train,y_train)# 5、模型评估# 方法1 :直接比对真实值和预测值y_predict = estimator.predict(x_test)print("y_predict:\n",y_predict)print("直接比对真实值和预测值:\n",y_test == y_predict)# 方法2:计算准确率score = estimator.score(x_test,y_test)print("准确率为:\n",score)# 最佳参数:best_params_print("最佳参数:\n",estimator.best_params_)# 最佳结果:best_score_print("最佳结果:\n",estimator.best_score_)# 最佳估计值:best_estimator_print("最佳估计值:\n",estimator.best_estimator_)# 交叉验证结果:cv_results_print("交叉验证结果:\n",estimator.cv_results_)return Nonedef nb_news():# 用朴素贝叶斯算法对新闻进行分类# 1、获取数据news = fetch_20newsgroups(subset="all")# 2、划分数据集x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)# 3、特征工程:文本特征抽取-tfidftransfer = TfidfVectorizer()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4、用朴素贝叶斯算法预估器流程estimator = MultinomialNB()estimator.fit(x_train,y_train)# 5、模型评估# 方法1 :直接比对真实值和预测值y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接比对真实值和预测值:\n", y_test == y_predict)# 方法2:计算准确率score = estimator.score(x_test, y_test)print("准确率为:\n", score)return Noneif __name__ == "__main__":# 代码1 :用KNN算法对鸢尾花进行分类# knn_iris()# 代码2 :用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证# knn_iris_gscv()# 代码3:用朴素贝叶斯算法对新闻进行分类nb_news()

5、总结

相关文章:

四、分类算法 - 朴素贝叶斯算法

目录 1、朴素贝叶斯算法 1.1 案例 1.2 联合概率、条件概率、相互独立 1.3 贝叶斯公式 1.4 朴素贝叶斯算法原理 1.5 应用场景 2、朴素贝叶斯算法对文本进行分类 2.1 案例 2.2 拉普拉斯平滑系数 3、API 4、案例:20类新闻分类 4.1 步骤分析 4.2 代码分析 …...

Javascript中var和let之间的区别

文章目录 一.变量提升(声)二.let和var的区别 区别: 1、var有变量提升,而let没有; 2、let不允许在相同的作用域下重复声明,而var允许; 3、let没有暂时性死区问题; 4、let创建的全局变量没有给window设置对应…...

不要抱怨,不如抱 Java 运算符吧 (1)

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人…...

python之ftp小工具

文章目录 python之FTP小工具 python之FTP小工具 源码 #!/usr/bin/python3 import os import sys from pyftpdlib.authorizers import DummyAuthorizer from pyftpdlib.handlers import FTPHandler, ThrottledDTPHandler from pyftpdlib.servers import FTPServer import logg…...

攻防世界-web-Training-WWW-Robots

题目信息 In this little training challenge, you are going to learn about the Robots_exclusion_standard. The robots.txt file is used by web crawlers to check if they are allowed to crawl and index your website or only parts of it. Sometimes these files rev…...

护眼灯减蓝光和无蓝光的区别是什么?盘点回购率前5名的护眼台灯!

随着近视问题日益严重,保护视力已逐渐成为公众关注的焦点。在日常生活中,不良的光线环境常常成为视力下降的潜在威胁,因此,护眼台灯成为了现代家庭保护视力的必备工具。其中,关于台灯的蓝光问题更是受到了广泛关注。有…...

Linux常见的指令

目录 01. ls 指令02. pwd命令03. cd 指令04. touch指令05.mkdir指令(重要):06.rmdir指令 && rm 指令(重要):07.man指令(重要):08.cp指令(重要&#x…...

C++项目开发编译踩坑记录

git工具配置了autocrlfinput下载的代码换行符默认从CRLF转换为LF,导致在windows桌面开发时,编译C代码全文报语法错误 问题现象:使用git clone命令从库上下载下来的代码,使用VS 2022编译,全文报语法错误,但…...

【Python】【Pycharm】Python Script头文件设置

1、步骤:File->settings->Editor->File and CodeTemplates->Python Script 2、复制粘贴以下代码,应用即可: #!/usr/bin/env python # -*- coding: utf-8 -*-# Time :${DATE} ${TIME} # Author : admin # Site :${SITE} …...

Recorder 实现语音录制并上传到后端(兼容PC和移动端)

Recorder 首页&#xff1a;https://github.com/xiangyuecn/Recorder 一、安装 npm install recorder-core二、代码部分 1. HTML页面 <template><div><el-inputv-model"ttsText"type"textarea"placeholder"请输入内容"><…...

fastJSON 字符串转对象

一、fastJSON 包 dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.33</version> </dependency> 二、转普通对象 自定义对象A A aa JSONObject.parseObject("字符串", A.…...

C++知识点总结(19):高级贪心算法

高级贪心算法 一、P1803 活动安排1. 审题2. 思路2.1 最优区间挑选方法2.2 分配时间方法2.3 排序方法 3. 参考答案 二、P1094 纪念品分组1. 审题2. 思路2.1 每组多少个方法2.2 搭配的方法 3. 参考答案 三、村民打水1. 审题2. 思路3. 参考答案 四、习题1. 服务等待1.1 审题1.2 参…...

Stable Diffusion ComfyUI安装详细教程

上一篇文章介绍了sd-webui的安装教程&#xff0c;但学习一下ComfyUI这种节点流程式的对理解AI绘画有较大帮助&#xff0c;而且后期排查错误会更加方便&#xff0c;熟练后用这种方式做AI绘画可玩性会更多。 文章目录 一、安装包说明二、安装文件介绍三、安装步骤四、汉化五、云主…...

前端基于Verdaccio搭建私有npm仓库,上传npm插件包,及下载使用自己的npm插件包

文章目录 一、原理二、常用的仓库地址三、优势四、准备环境六、使用verdaccio搭建私有npm服务1、安装2、运行3、配置config.yaml&#xff0c;使局域网下能共享访问&#xff0c;否则只能本机访问。4、重新运行 七、npm常见操作查看当前用户信息查看源地址切换源地址删除源地址创…...

Unity红点系统的架构与设计

在游戏开发中&#xff0c;红点系统是一种常见的功能&#xff0c;用于提示玩家有未读消息或待处理任务。在Unity引擎中&#xff0c;我们可以使用脚本来实现红点系统&#xff0c;下面我将介绍一种基于Unity的红点系统的架构与设计&#xff0c;并给出对应的代码实现。 红点系统的代…...

go语言内存泄漏检查工具

和其它语言一样&#xff0c;go语言也提供了一些内存泄漏分析的工具&#xff0c;用来帮助查找和分析内存泄漏问题。有以下一些常用的工具和技术&#xff1a; 1、go tool pprof&#xff1a; Go内置了一个性能分析工具&#xff08;pprof&#xff09;&#xff0c;它可以用于分析内…...

Ps:灰度模式

Ps菜单&#xff1a;图像/模式/灰度 Image/Mode/Grayscale 灰度 Grayscale模式是一种特定的色彩模式&#xff0c;用于处理没有彩色信息的图像。 在灰度模式下&#xff0c;图像不包含颜色&#xff0c;只显示黑色、白色及其间的灰色阶。 这种模式对于需要强调光影、纹理和形状而不…...

实现律所高质量发展-Alpha法律智能操作系统

律师行业本质上属于服务行业&#xff0c;而律师团队作为一个独立的服务单位&#xff0c;应当包含研发、市场、销售、服务等单位发展的基础工作环节。但现实中&#xff0c;很多律师团队其实并没有区分这些工作。鉴于此&#xff0c;上海市锦天城律师事务所医药大健康行业资本市场…...

WordPress后台自定义登录和管理页面插件Admin Customizer

WordPress默认的后台登录页面和管理员&#xff0c;很多站长都想去掉或修改一些自己不喜欢的功能&#xff0c;比如登录页和管理页的主题样式、后台左侧菜单栏的某些菜单、仪表盘的一些功能、后台页眉页脚某些小细节等等。这里boke112百科推荐这款可以让我们轻松自定义后台登录页…...

C语言——static的三大用法

被称为面试爱考爱问题的它到底有何奥义 它难度不大并且非常常用&#xff0c;话不多说&#xff0c;直接开始 一、局部静态变量 定义 在函数内部使用static修饰的变量被称为局部静态变量&#xff0c;与普通的局部变量不同&#xff0c;局部静态变量在使用后不会被销毁&#xff…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...