基于开源模型对文本和音频进行情感分析
应用场景
- 从商品详情页爬取商品评论,对其做舆情分析;
- 电话客服,对音频进行分析,做舆情分析;
通过开发相应的服务接口,进一步工程化;
模型选用
- 文本,选用了通义实验室fine-tune的structBERT 模型,基于大众点评的评论数据进行训练,使用预训练模型进行推理,CPU 能跑,支持模型微调,基本上不用微调了,因为他是基于电商领域的数据集进行训练的,基本够用,可本地部署;
参考论文:
title: Incorporating language structures into pre-training for deep language understanding
author:Wang, Wei and Bi, Bin and Yan, Ming and Wu, Chen and Bao, Zuyi and Xia, Jiangnan and Peng, Liwei and Si, Luo
journal:arXiv preprint arXiv:1908.04577,
year:2019
版本依赖:
modelscope-lib 最新版本
推理代码:
semantic_cls = pipeline(Tasks.text_classification, 'damo/nlp_structbert_sentiment-classification_chinese-base')comment0 = '非常厚实的一包大米,来自遥远的东北,盘锦大米,应该不错的,密封性很好。卖家的服务真是贴心周到!他们提供了专业的建议,帮助我选择了合适的商品。物流速度也很快,让我顺利收到了商品。'
result0 = semantic_cls(input=comment0)
if result0['scores'][0] > result0['scores'][1]:print("'" + comment0 + "',属于" + result0["labels"][0] + "评价")
else:print("'" + comment0 + "',属于" + result0["labels"][1] + "评价")comment1 = '食物的口感还不错,不过店员的服务态度可以进一步改善一下。'
result1 = semantic_cls(input=comment1)
if result1['scores'][0] > result1['scores'][1]:print("'" + comment1 + "',属于" + result1["labels"][0] + "评价")
else:print("'" + comment1 + "',属于" + result1["labels"][1] + "评价")comment2 = '衣服尺码合适,色彩可以再鲜艳一些,客服响应速度一般。'
result2 = semantic_cls(input=comment2)
if result2['scores'][0] > result2['scores'][1]:print("'" + comment2 + "',属于" + result2["labels"][0] + "评价")
else:print("'" + comment2 + "',属于" + result2["labels"][1] + "评价")comment3 = '物流慢,售后不好,货品质量差。'
result3 = semantic_cls(input=comment3)
if result3['scores'][0] > result3['scores'][1]:print("'" + comment3 + "',属于" + result3["labels"][0] + "评价")
else:print("'" + comment3 + "',属于" + result3["labels"][1] + "评价")comment4 = '物流包装顺坏,不过客服处理速度比较快,也给了比较满意的赔偿。'
result4 = semantic_cls(input=comment4)
if result4['scores'][0] > result4['scores'][1]:print("'" + comment4 + "',属于" + result4["labels"][0] + "评价")
else:print("'" + comment4 + "',属于" + result4["labels"][1] + "评价")comment5 = '冰箱制冷噪声较大,制冷慢。'
result5 = semantic_cls(input=comment5)
if result5['scores'][0] > result5['scores'][1]:print("'" + comment5 + "',属于" + result5["labels"][0] + "评价")
else:print("'" + comment5 + "',属于" + result5["labels"][1] + "评价")comment6 = '买了一件刘德华同款鞋,穿在自己脚上不像刘德华,像扫大街的。'
result6 = semantic_cls(input=comment6)
if result6['scores'][0] > result6['scores'][1]:print("'" + comment6 + "',属于" + result6["labels"][0] + "评价")
else:print("'" + comment6 + "',属于" + result6["labels"][1] + "评价")
运行结果:
'非常厚实的一包大米,来自遥远的东北,盘锦大米,应该不错的,密封性很好。卖家的服务真是贴心周到!他们提供了专业的建议,帮助我选择了合适的商品。物流速度也很快,让我顺利收到了商品。',属于正面评价
'食物的口感还不错,不过店员的服务态度可以进一步改善一下。',属于正面评价
'衣服尺码合适,色彩可以再鲜艳一些,客服响应速度一般。',属于正面评价
'物流慢,售后不好,货品质量差。',属于负面评价
'物流包装顺坏,不过客服处理速度比较快,也给了比较满意的赔偿。',属于正面评价
'冰箱制冷噪声较大,制冷慢。',属于负面评价
'买了一件刘德华同款鞋,穿在自己脚上不像刘德华,像扫大街的。',属于负面评价
- 音频,选用了通义实验室 fine-tune的emotion2vec微调模型,CPU 能跑,可本地部署;
参考论文:
title: Self-Supervised Pre-Training for Speech Emotion Representation
author:Ma, Ziyang and Zheng, Zhisheng and Ye, Jiaxin and Li, Jinchao and Gao, Zhifu and Zhang, Shiliang and Chen, Xie
journal:arXiv preprint arXiv:2312.15185
year:2023
开源地址:
Official PyTorch code for extracting features and training downstream models with emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation
版本依赖:
modelscope >= 1.11.1
funasr>=1.0.5
推理代码:
from funasr import AutoModelmodel = AutoModel(model="iic/emotion2vec_base_finetuned", model_revision="v2.0.4")wav_file = f"{model.model_path}/example/test.wav"
res = model.generate(wav_file, output_dir="./outputs", granularity="utterance", extract_embedding=False)
print(res)scores = res[0]["scores"]max_score = 0
max_index = 0
i = 0
for score in scores:if score > max_score:max_score = scoremax_index = ii += 1print("音频分析后,情感基调为:" + res[0]["labels"][max_index])
运行结果
rtf_avg: 0.263: 100%|██████████| 1/1 [00:02<00:00, 2.64s/it]
[{'key': 'rand_key_2yW4Acq9GFz6Y', 'labels': ['生气/angry', '厌恶/disgusted', '恐惧/fearful', '开心/happy', '中立/neutral', '其他/other', '难过/sad', '吃惊/surprised', '<unk>'], 'scores': [0.06824027001857758, 0.030794354155659676, 0.20301730930805206, 0.09666425734758377, 0.12219445407390594, 0.06753909587860107, 0.13648174703121185, 0.11873088777065277, 0.1563376784324646]}]
音频分析后,情感为:恐惧/fearfulProcess finished with exit code 0
相关文章:
基于开源模型对文本和音频进行情感分析
应用场景 从商品详情页爬取商品评论,对其做舆情分析;电话客服,对音频进行分析,做舆情分析; 通过开发相应的服务接口,进一步工程化; 模型选用 文本,选用了通义实验室fine-tune的st…...
SQL中为什么不要使用1=1
最近看几个老项目的SQL条件中使用了11,想想自己也曾经这样写过,略有感触,特别拿出来说道说道。 编写SQL语句就像炒菜,每一种调料的使用都可能会影响菜品的最终味道,每一个SQL条件的加入也可能会影响查询的执行效率。那…...
python 几种常见的音频数据读取、保存方式
1. soundfile 库的使用 soundfile库是一个Python库,主要用于读取和写入音频文件。它支持多种音频格式,包括WAV、AIFF、FLAC和OGG等。通过soundfile库,用户可以方便地将numpy数组存储到音频文件或者将音频文件加载到numpy数组中。此外&#x…...
关于msvcr120.dll丢失怎样修复的详细解决步骤方法分享,msvcr120.dll文件的相关内容
在电脑使用过程中,我们经常遇到各种系统错误,其中msvcr120.dll丢失是一个常见问题。msvcr120.dll文件是Visual C Redistributable for Visual Studio 2015/2017的一个组件,主要用于支持某些应用程序的正常运行。当电脑出现msvcr120.dll丢失情…...
简单几步通过DD工具把云服务器系统Linux改为windows
简单几部通过DD安装其他系统,当服务器的web控制台没有我们要装的系统,就需要通过DD(Linux磁盘)工具来更改系统,(已知支持KVM系统) 本文如何简单的更换系统,不通过web控制台来更换&a…...
使用 package.json 配置代理解决 React 项目中的跨域请求问题
使用 package.json 配置代理解决 React 项目中的跨域请求问题 当我们在开发前端应用时,经常会遇到跨域请求的问题。为了解决这个问题,我们可以通过配置代理来实现在开发环境中向后端服务器发送请求。 在 React 项目中,我们可以使用 package…...
生成 Let‘s Encrypt 免费证书
文章目录 1. 安装 acme.sh2. 添加云服务商安全访问密钥并授权管理DNS记录3. 当前 Shell 添加安全访问密钥变量4. 生成证书5. 拷贝证书6. 清理安全访问密钥变量7. 打开脚本自动更新 代码仓库地址:https://github.com/Neilpang/acme.sh 1. 安装 acme.sh yum -y insta…...
int128的实现(基本完成)
虽然有一个声明叫_int128但是这并不是C标准: long long 不够用?详解 __int128 - FReQuenter - 博客园 (cnblogs.com) 网络上去找int128的另类实现方法,发现几乎都是在介绍_int128的 然后我就自己想了个办法,当时还没学C…...
【linux】使用 acme.sh 实现了 acme 协议生成免费的SSL 证书
acme.sh 实现了 acme 协议, 可以从 letsencrypt 生成免费的证书. 主要步骤: 安装 acme.sh生成证书copy 证书到 nginx/apache 或者其他服务更新证书更新 acme.sh出错怎么办, 如何调试 下面详细介绍. 1. 安装 acme.sh 安装很简单, 一个命令: curl https://get.acme.sh | sh…...
MACOS上面C/C++获取网卡索引,索引获取网卡接口名
依赖函数: if_nametoindex IF名字 to IF索引 if_indextoname IF索引 to IF名字 MACOS 10.7 版本支援(就是2011年发不OSX的第一个面向用的系统版本) int GetInterfaceIndex(const ppp::string& ifrName) noexcept{if (ifrName.empt…...
解决SSH远程登录开饭板出现密码错误问题
输入“adduser Zhanggong回车”,使用adduser命令创建开发板用户名为Zhanggong 输入密码“123456” 输入密码“123456”...
什么时候用ref和reactive
在Vue 3中,ref和reactive都是用于创建响应式数据的工具,但它们的使用场景有所不同。 使用ref的情况: 基本数据类型:当你需要响应式地处理基本数据类型(如数字、字符串、布尔值)时,应该使用ref…...
Java实战:Spring Boot实现邮件发送服务
本文将详细介绍如何在Spring Boot应用程序中实现邮件发送服务。我们将探讨Spring Boot集成邮件发送服务的基本概念,以及如何使用Spring Boot和第三方邮件服务提供商来实现邮件发送。此外,我们将通过具体的示例来展示如何在Spring Boot中配置和使用邮件发…...
重磅!MongoDB推出Atlas Stream Processing公共预览版
日前,MongoDB宣布推出Atlas Stream Processing公共预览版。 在Atlas平台上有兴趣尝试这项功能的开发者都享有完全的访问权限,可前往“阅读原文”链接点击了解更多详细信息或立即开始使用。 开发者喜欢文档型数据库的灵活性、易用性以及Query API查询方…...
dell戴尔电脑灵越系列Inspiron 15 3520原厂Win11系统中文版/英文版
Dell戴尔笔记本灵越3520原装出厂Windows11系统包,恢复出厂开箱预装OEM系统 链接:https://pan.baidu.com/s/1mMOAnvXz5NCDO_KImHR5gQ?pwd3nvw 提取码:3nvw 原厂系统自带所有驱动、出厂主题壁纸、系统属性联机支持标志、Office办公软件、MyD…...
k8s(3)
目录 一.K8S的三种网络 flannel的三种模式: 在 node01 节点上操作: calico的 三种模式: flannel 与 calico 的区别? 二.CoreDNS 在所有 node 节点上操作: 在 master01 节点上操作: 编辑 DNS 解析测试&#…...
Java多线程并发学习
一、Java 中用到的线程调度 1. 抢占式调度: 抢占式调度指的是每条线程执行的时间、线程的切换都由系统控制,系统控制指的是在系统某种运行机制下,可能每条线程都分同样的执行时间片,也可能是某些线程执行的时间片较长࿰…...
Curfew e-Pass 管理系统存在Sql注入漏洞 附源代码
免责声明:本文所涉及的信息安全技术知识仅供参考和学习之用,并不构成任何明示或暗示的保证。读者在使用本文提供的信息时,应自行判断其适用性,并承担由此产生的一切风险和责任。本文作者对于读者基于本文内容所做出的任何行为或决…...
记阿里云mysql丢表丢数据的实践记录
第一时间挂工单,联系工程师指引,现在回过来想,第一时间要确认发生时间。 1.通过性能视图(马后炮的总结,实际凭记忆恢复了三四次才找到数据) 2.先恢复数据 通过Navicat工具,结构同步࿰…...
自然语言转SQL的应用场景探索
自然语言转SQL的应用场景探索 1. 自然语言转sql有哪些解决方案2. 自然语言转sql有哪些应用场景3. 自然语言转sql在智能制造领域有哪些应用场景 1. 自然语言转sql有哪些解决方案 自然语言转SQL(NL2SQL)是一个涉及自然语言处理(NLP)…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
