当前位置: 首页 > news >正文

十大基础排序算法

排序算法分类

排序:将一组对象按照某种逻辑顺序重新排列的过程。

  • 按照待排序数据的规模分为:

    1. 内部排序:数据量不大,全部存在内存中;
    2. 外部排序:数据量很大,无法一次性全部存在内存中,因此排序中需要访问外存。
  • 按照排序是否稳定分为:

    1. 稳定排序:相等的元素在排序前后的相对位置不变。例如,a等于b,且原序列a在b前,排序后a仍在b前,则为稳定排序。
    2. 不稳定排序:相等元素在排序前后的相对位置可能发生变化。
  • 按照是否需要额外内存分为:

    1. 原地排序:在排序过程中不申请多余的存储空间,只利用原来存储待排数据的存储空间进行比较和交换的数据排序。
    2. 非原地排序:需要额外内存空间存储数组副本以辅助排序。
  • 按照排序方式分为:

    1. 比较类排序:通过比较来决定元素间的相对次序。
    2. 非比较类排序:不通过元素间的比较进行排序。
      在这里插入图片描述

比较类排序

冒泡排序

冒泡排序是一种典型的交换排序

算法原理:

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。这一步结束后,排在最后的元素会是所有数据中最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

冒泡排序基本代码如下:

void BubbleSort(vector<int>& nums){const int size = nums.size();for(int i = 0; i < size; ++i)for(int j = 0; j < size-i-1; ++j)if(nums[j] > nums[j+1])swap(nums[j], nums[j+1]);
}

性能评价:

  • nums[j] == nums[j+1]时,我们并不交换它们。所以冒泡排序是稳定的;
  • 共循环了(n-1)+(n-2)+…+2+1=n(n-1)/2,所以时间复杂度是O(n^2)。

快速排序

快速排序是从冒泡排序演变而来的,实际上是在冒泡排序基础上的递归分治法。
快速排序在每一轮挑选一个基准元素,并让其他比它大的元素移动到数列一边,比它小的元素移动到数列的另一边,从而把数列拆解成了两个部分。

快排也用了分治策略,其本质框架类似二叉树的前序遍历。

其实现代码如下:

void QuickSort(std::vector<int>& nums, int left, int right){if(left >= right){return;}//"治"int i = left;int j = right;while(i < j){while(i < j && nums[j] > nums[left])     --j;while(i < j && nums[i] <= nums[left])    ++i;std::swap(nums[i], nums[j]);}std::swap(nums[i], nums[left]);//“分”QuickSort(nums, left, i - 1);QuickSort(nums, i + 1, right);
}

注意事项

  1. 如果选取数列的第一个元素为基准元素,则从right所指向的元素开始与基准元素进行比较;如果选取数列的最后一个元素为基准元素,则从left所指向的元素开始与基准元素进行比较。
  2. 如果选取数列的第一个元素为基准元素,left所指向的元素与基准元素第一次对比时,left下标与基准元素下标相等(即:判断条件中添加等号);如果选取数列的最后一个元素为基准元素,right所指向的元素与基准元素第一次对比时,right下标与基准元素下标相等。

时间复杂度:O(nlogn)
空间复杂度:O(1)
稳定性:不稳定

插入排序

基本思想:将待排序数据看成由已排序未排序两部分组成。对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法流程:

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。

其实现代码如下:

void InsertSort(vector<int>& nums){const int size = nums.size();for(int i = 1; i < size; ++i){int curr = nums[i];int j = i - 1;while(j >= 0 && curr < nums[j]){nums[j+1] = nums[j];--j;}nums[j+1] = curr;}
}

性能评价:

  • 插入排序是稳定的。
  • 时间复杂度为O(n^2)。

希尔排序

在插入排序中,当需要插入的数是较小的数时,后移的次数明显增多,对效率有影响.

希尔排序是对插入排序的优化。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序
在这里插入图片描述

其实现代码如下:

void ShellSort(std::vector<int>& nums){const int size = nums.size();for(int gap = size / 2; gap > 0; gap /= 2){for(int i = gap; i < size; ++i){int curr = nums[i];int j = i - gap;while(j >= 0 && curr < nums[j]){nums[j+gap] = nums[j];j -= gap;}nums[j+gap] = curr;}}
}

选择排序

基本思想:首先在未排序数据找到最小的数,然后把该最小数放到排序序列的末尾,直到所有数据排序完毕。

其实现代码如下:

void SelectionSort(vector<int>& nums){const int size = nums.size();for(int i = 0; i < size-1; ++i){int minIndex = i;for(int j = i+1; j < size; ++j)if(nums[j] < nums[minIndex])minIndex = j;swap(nums[i], nums[minIndex]);}
}

性能评价:

  • 简单选择排序是不稳定排序;
  • 无论什么数据进去,它的比较次数都是n(n-1)/2,所以时间复杂度是O(n^2)。

堆排序

首先将等待排序的数组构造成一个大根堆,构造结束后整个数组当中的最大值就是堆顶元素;
然后将堆顶元素与数组末尾元素交换位置,交换结束后数组末尾元素为最大值,剩下其他的待排序的数组个数为n-1个;
将剩余的n-1个数再次构造成一个大根堆,再将堆顶元素与数组第n-1个位置的元素交换位置,重复上述步骤可以最终得到一个有序数组。

其实现代码如下:

//堆调整
void Heapify(std::vector<int>& nums, int index, int heap_size){int parent_index = index;int leftChild_index = 2 * parent_index + 1;while(leftChild_index < heap_size){int maxValue_index = leftChild_index+1 < heap_size && nums[leftChild_index+1] > nums[leftChild_index] ? leftChild_index+1 : leftChild_index;maxValue_index = nums[maxValue_index] > nums[parent_index] ? maxValue_index : parent_index;if(maxValue_index == parent_index)return;std::swap(nums[maxValue_index], nums[parent_index]);parent_index = maxValue_index;leftChild_index = 2 * parent_index + 1;} 
}
//堆排序
void HeapSort(std::vector<int>& nums){if(nums.size() < 2)return;int heap_size = nums.size();//从下标最大的父节点开始。(最后一个元素的下标是n-1,最后一个父节点的下标是n/2-1)for(int i = heap_size/2 - 1; i >= 0; --i)Heapify(nums, i, heap_size);std::swap(nums[0], nums[--heap_size]);while(heap_size > 0){Heapify(nums, 0, heap_size);std::swap(nums[0], nums[--heap_size]);}
}

时间复杂度:O(nlogn)
空间复杂度:O(1)
稳定性:不稳定

归并排序

简单归并排序即二路归并排序。

归并排序采用分治策略,其本质框架类似二叉树的后序遍历,左右子树的递归就是“分”,根结点的处理部分就是“治”。

在这里插入图片描述

其实现代码如下:

std::vector<int> temp;
void MergeSort(std::vector<int>& nums, int left, int right){if(left >= right){return;}int mid = left + (right - left) / 2;//“分”MergeSort(nums, left, mid);MergeSort(nums, mid + 1, right);//"治"int i = left;int j = mid + 1;int t = left;while(i <= mid && j <= right){if(nums[i] <= nums[j]){temp[t++] = nums[i++];}else{temp[t++] = nums[j++];}}while(i <= mid){temp[t++] = nums[i++];}while(j <= right){temp[t++] = nums[j++];}for(int k = left; k <= right; ++k){nums[k] = temp[k];}
}

时间复杂度:O(nlogn)
空间复杂度:O(n)
稳定性:稳定

非比较类排序

基数排序

计数排序

桶排序

总结

在这里插入图片描述

不稳定排序记忆口诀:一堆(堆排序)作业,心态不稳,快(快速排序)选择(选择排序)一些(希尔排序)朋友出去玩。

相关文章:

十大基础排序算法

排序算法分类 排序&#xff1a;将一组对象按照某种逻辑顺序重新排列的过程。 按照待排序数据的规模分为&#xff1a; 内部排序&#xff1a;数据量不大&#xff0c;全部存在内存中&#xff1b;外部排序&#xff1a;数据量很大&#xff0c;无法一次性全部存在内存中&#xff0c;…...

IP协议及相关技术协议

一、IP基本认识 1. IP的作用 IP在TCP/IP模型中处于网络层&#xff0c;网络层的主要作用是实现主机与主机之间的通信&#xff0c;而IP的作用是在复杂的网络环境中将数据包发送给最终目的主机。 2. IP与MAC的关系 简单而言&#xff0c;MAC的作用是实现“直连”的两个设备之通信…...

小红书x-s算法及补环境 单旋转验证码

前言 大家好呀!新的一年,先祝大家新年快乐咯.祝大家逆向,风控都一把过咯. 新年第一篇文章,后续会持续更新哦! 春晚见证了中国经济的新风口,今年春晚互联网企业赞助商就两家,小红书和京东.小红书类似国外的ins,有预感未来小红书会大火,所以写了这篇文章,有需要的加我,联系方式…...

代码检测规范和git提交规范

摘要&#xff1a;之前开发的项目&#xff0c;代码检测和提交规范都是已经配置好的&#xff0c;最近自己新建的项目就记录下相关配置过程。 1. ESlint配置 2013年6月创建开源项目&#xff0c;提供一个插件化的JavaScript代码检测工具&#xff0c;创建项目是生成的eslintrc.js文…...

Elasticsearch:什么是搜索引擎?

搜索引擎定义 搜索引擎是一种软件程序或系统&#xff0c;旨在帮助用户查找存储在互联网或特定数据库中的信息。 搜索引擎的工作原理是对各种来源的内容进行索引和编目&#xff0c;然后根据用户的搜索查询向用户提供相关结果列表。 搜索引擎对于希望快速有效地查找特定信息的用…...

人工智能几个关键节点:深蓝,AlphaGo,ChatGPT,Sora

近30年&#xff0c;人工智能几个关键节点&#xff1a;深蓝&#xff0c;AlphaGo&#xff0c;ChatGPT&#xff0c;Sora 深蓝&#xff1a; 1997年&#xff0c;深蓝击败卡斯帕罗夫的比赛是通过一系列复杂的算法和策略实现的。深蓝的开发团队使用了一种名为“暴力搜索”的技术&…...

WordPres Bricks Builder 前台RCE漏洞复现(CVE-2024-25600)

0x01 产品简介 Bricks Builder是一款用于WordPress的开发主题,提供直观的拖放界面,用于设计和构建WordPress网站。它使用户能够轻松创建自定义的网页布局和设计,无需编写或了解复杂的代码。Bricks Builder具有用户友好的界面和强大的功能,使用户可以通过简单的拖放操作添加…...

代码随想录算法训练营总结 | 慢慢总结,想起啥就先写上

二叉树总结 二叉树的结构 stauct TreeNode {int val&#xff1b;TreeNode* left;TreeNode* right; }二叉树的递归函数分析 二叉树的递归函数当做只有一个根节点&#xff0c;一个左子树&#xff0c;一个右节点的数去看&#xff0c;这看着是个废话&#xff0c; 其实很重要 回溯…...

基于开源模型对文本和音频进行情感分析

应用场景 从商品详情页爬取商品评论&#xff0c;对其做舆情分析&#xff1b;电话客服&#xff0c;对音频进行分析&#xff0c;做舆情分析&#xff1b; 通过开发相应的服务接口&#xff0c;进一步工程化&#xff1b; 模型选用 文本&#xff0c;选用了通义实验室fine-tune的st…...

SQL中为什么不要使用1=1

最近看几个老项目的SQL条件中使用了11&#xff0c;想想自己也曾经这样写过&#xff0c;略有感触&#xff0c;特别拿出来说道说道。 编写SQL语句就像炒菜&#xff0c;每一种调料的使用都可能会影响菜品的最终味道&#xff0c;每一个SQL条件的加入也可能会影响查询的执行效率。那…...

python 几种常见的音频数据读取、保存方式

1. soundfile 库的使用 soundfile库是一个Python库&#xff0c;主要用于读取和写入音频文件。它支持多种音频格式&#xff0c;包括WAV、AIFF、FLAC和OGG等。通过soundfile库&#xff0c;用户可以方便地将numpy数组存储到音频文件或者将音频文件加载到numpy数组中。此外&#x…...

关于msvcr120.dll丢失怎样修复的详细解决步骤方法分享,msvcr120.dll文件的相关内容

在电脑使用过程中&#xff0c;我们经常遇到各种系统错误&#xff0c;其中msvcr120.dll丢失是一个常见问题。msvcr120.dll文件是Visual C Redistributable for Visual Studio 2015/2017的一个组件&#xff0c;主要用于支持某些应用程序的正常运行。当电脑出现msvcr120.dll丢失情…...

简单几步通过DD工具把云服务器系统Linux改为windows

简单几部通过DD安装其他系统&#xff0c;当服务器的web控制台没有我们要装的系统&#xff0c;就需要通过DD&#xff08;Linux磁盘&#xff09;工具来更改系统&#xff0c;&#xff08;已知支持KVM系统&#xff09; 本文如何简单的更换系统&#xff0c;不通过web控制台来更换&a…...

使用 package.json 配置代理解决 React 项目中的跨域请求问题

使用 package.json 配置代理解决 React 项目中的跨域请求问题 当我们在开发前端应用时&#xff0c;经常会遇到跨域请求的问题。为了解决这个问题&#xff0c;我们可以通过配置代理来实现在开发环境中向后端服务器发送请求。 在 React 项目中&#xff0c;我们可以使用 package…...

生成 Let‘s Encrypt 免费证书

文章目录 1. 安装 acme.sh2. 添加云服务商安全访问密钥并授权管理DNS记录3. 当前 Shell 添加安全访问密钥变量4. 生成证书5. 拷贝证书6. 清理安全访问密钥变量7. 打开脚本自动更新 代码仓库地址&#xff1a;https://github.com/Neilpang/acme.sh 1. 安装 acme.sh yum -y insta…...

int128的实现(基本完成)

虽然有一个声明叫_int128但是这并不是C标准&#xff1a; long long 不够用&#xff1f;详解 __int128 - FReQuenter - 博客园 (cnblogs.com) 网络上去找int128的另类实现方法&#xff0c;发现几乎都是在介绍_int128的 然后我就自己想了个办法&#xff0c;当时还没学C&#xf…...

【linux】使用 acme.sh 实现了 acme 协议生成免费的SSL 证书

acme.sh 实现了 acme 协议, 可以从 letsencrypt 生成免费的证书. 主要步骤: 安装 acme.sh生成证书copy 证书到 nginx/apache 或者其他服务更新证书更新 acme.sh出错怎么办, 如何调试 下面详细介绍. 1. 安装 acme.sh 安装很简单, 一个命令: curl https://get.acme.sh | sh…...

MACOS上面C/C++获取网卡索引,索引获取网卡接口名

依赖函数&#xff1a; if_nametoindex IF名字 to IF索引 if_indextoname IF索引 to IF名字 MACOS 10.7 版本支援&#xff08;就是2011年发不OSX的第一个面向用的系统版本&#xff09; int GetInterfaceIndex(const ppp::string& ifrName) noexcept{if (ifrName.empt…...

解决SSH远程登录开饭板出现密码错误问题

输入“adduser Zhanggong回车”&#xff0c;使用adduser命令创建开发板用户名为Zhanggong 输入密码“123456” 输入密码“123456”...

什么时候用ref和reactive

在Vue 3中&#xff0c;ref和reactive都是用于创建响应式数据的工具&#xff0c;但它们的使用场景有所不同。 使用ref的情况&#xff1a; 基本数据类型&#xff1a;当你需要响应式地处理基本数据类型&#xff08;如数字、字符串、布尔值&#xff09;时&#xff0c;应该使用ref…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...