当前位置: 首页 > news >正文

WSL2使用Nvidia-Docker实现CUDA版本自由切换

众所周知,深度学习的环境往往非常麻烦,经常不同的项目所依赖的 torch、tensorflow 包对 CUDA 的版本也有不同的要求,Linux 下进行 CUDA 的管理比较麻烦,是一个比较头疼的问题。

随着 WSL2 对物理机显卡的支持,Nvidia-Docker 也提供了对容器显卡的支持。我们可以通过拉取不同的 Docker 镜像的方式来实现对容器内 CUDA、CUDNN 的自由切换,操作非常简易。

1. Win11 显卡驱动的安装

注意:WSL2中是不需要且不能安装任何显卡驱动的,它的显卡驱动完全依赖于 Win11 中的显卡驱动,因此我们只需要安装你显卡对应的 Win11 版本显卡驱动版本(必须是 Win11 版本的驱动),这个已经有很多教程了,这里就不赘述。如果你安装成功,可以在 Win11 的 cmd 中输入 nvidia-smi可以看到下图。
在这里插入图片描述

因为 WSL2 中的显卡驱动完全依赖于 Win11 的显卡驱动,因此在 WSL2 中输入 nvidia-smi 也可以看到相同驱动版本的输出。
请注意:这里的 nvidia-smi 能作用的范围,只作用于你 Win11 安装显卡驱动时所登录的那个用户名对应到 WSL2 中的用户名。比如我是在 Win11 (guosongyuan) 用户上安装的显卡驱动,那么我只能在 WSL2 的 gsy 用户状态下才能执行该 nvidia-smi 指令,root 用户执行该命令是不能生效的。

在这里插入图片描述

2. 安装 Docker 和 Nvidia-Docker

  1. 安装 Docker 引擎可以参考文档:Docker 引擎官方安装教程;
  2. 安装 Docker 引擎之后,就可以在其基础上安装 Nvidia-Docker 组件:Nvidia-Docker 安装教程。
    这两个步骤非常简单,如果看不懂英语的话直接用谷歌翻译就好。

3. 选择合适的 CUDA 和 CUDNN 的镜像

使用 Nvidia-Docker 的好处就在于,你不需要真的在 WSL 中安装 CUDA 和 CUDNN,这样就可以避免在配置不同项目环境时遇到的很麻烦的环境切换问题。我们只要每次遇到一个新的项目,拉取对应的 CUDA 和 CUDNN 版本即可,即插即用,不想用了直接删除对应的镜像和容器即可,跟删除软件一样方便。

这里以安装 CUDA 11.2.0 版本为例,我们来到 Docker 镜像市场:Docker HUB,在其中搜索关键字 nvidia/cuda,如下图。
在这里插入图片描述

点进入,在 Tags 中搜索对应的 CUDA 版本,注意同一个版本下对应三种不同的类型(devel、runtime、base),我们推荐安装 devel 版本,因为它的环境更齐全,我们这里因为 WSL2 是 Ubuntu 20.04 版本的,所以我们选择镜像的时候选择 ubuntu20.04 后缀的。
这里以 nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 镜像为例,通过 sudo docker pull nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 将镜像拉取下来。

拉取镜像之后,我们可以查看当前镜像中的显卡驱动、CUDA版本和 CUDNN 的版本。

  1. 查看显卡驱动版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvidia-smi
  2. 查看 CUDA 版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvcc -V
  3. 查看 CUDNN 版本,因为镜像官方将 CUDA 和 CUDNN 进行了解耦合,因此我们需要分两步进行查询操作。首先通过 sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 whereis cudnn,看到 cudnn.h 所在路径 cudnn: /usr/include/cudnn.h。我们根据这个输出结果,把 cudnn.h 之前的 include 路径记住,查询该 include 下的 cudnn_verseion.h 文件:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2,这样就能看到 CUDNN 的版本号了。
    在这里插入图片描述

4. 利用拉取的镜像构建自己的镜像

我们拉取的镜像中只有最基础的 CUDA 和 CUDNN,还没有配置 Anaconda、换源、git 、pip 等常用工具,因此我们将这些可能用到的常用工具将其打包好。

为了构建镜像,我们在用户目录下创建一个名为 mkimage 的目录,在其中放入我们需要的三个内容: Anaconda3-5.2.0-Linux-x86_64.sh、Dockerfile、sources.list,其中 sources.list 是用来给 Ubuntu apt 换源用的。

sources.list 内容如下:

######################################
###### CONTENT for sources.list ######
######################################deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse

Dockerfile内容如下:

####################################
###### CONTENT for Dockerfile ######
##################################### Extends from father image [CHANGE WITH YOUR NEED]
FROM nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04# Set locale
ENV DEBIAN_FRONTEND noninteractive# Change anaconda source
# ADD means copy file from host machine to containers
ADD sources.list /etc/apt/
ENV PATH /opt/conda/bin:$PATH# Install basic dependencies
RUN rm /etc/apt/sources.list.d/cuda.list && \rm /etc/apt/sources.list.d/nvidia-ml.listRUN apt-get update && apt-get install -y --no-install-recommends \bzip2 \g++ \git \vim \python-dev \python3-pip \build-essential \wget && \rm -rf /var/lib/apt/lists/*# Install Anaconda for python 3.6
ADD Anaconda3-5.2.0-Linux-x86_64.sh /home/anaconda.sh
RUN /bin/bash /home/anaconda.sh -b -p /opt/conda && \ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \rm /home/anaconda.sh# Change sources for conda, add tsinghua sources and remove defaults
RUN conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/ && \conda config --remove channels defaults# Change sources for pip3
RUN mkdir ~/.pip && \echo "[global]\nindex-url = http://mirrors.aliyun.com/pypi/simple/\n[install]\ntrusted-host = mirrors.aliyun.com" > ~/.pip/pip.conf# Initialize workspace
RUN mkdir /workspace
WORKDIR /workspaceCMD ["/bin/bash"]

其中,Anaconda3-5.2.0-Linux-x86_64.sh 可以在 Anaconda Archive 中找到。

然后,我们可以通过下列指令制作镜像 my-nvidia/cuda:11.2

cd ~/mkimage
sudo docker build -f Dockerfile -t my-nvidia/cuda:11.2 .

经过漫长的等待,我们可以看到一个 Successfully 提示消息,证明我们镜像打包成功。
在这里插入图片描述

构建完成后,我们可以通过下面这个指令进行容器的创建:

sudo docker run -it --gpus all --name cuda_11.2 my-nvidia/cuda:11.2 /bin/bash

进入容器之后,我们可以通过 nvidia-sminvcc -Vconda info 查看当前的显卡驱动、CUDA版本和 conda 源信息。
如果使用 conda 安装包的时候出现了conda Malformed version string ‘~’: invalid character(s)报错,可以使用下面的命令更新一下 conda。

conda upgrade -n base -c defaults --override-channels conda
conda update --all

我这里从 PyTorch 官网中下载了一个对应 CUDA 版本的 torch(我创建了一个名为 pytorch 的 conda 虚拟环境),可以看到在容器中 GPU 资源是可以正常被访问的。这样我们以后就可以随时切换 CUDA 版本了,是不是很方便?
在这里插入图片描述

相关文章:

WSL2使用Nvidia-Docker实现CUDA版本自由切换

众所周知,深度学习的环境往往非常麻烦,经常不同的项目所依赖的 torch、tensorflow 包对 CUDA 的版本也有不同的要求,Linux 下进行 CUDA 的管理比较麻烦,是一个比较头疼的问题。 随着 WSL2 对物理机显卡的支持,Nvidia-…...

pygame9 扫雷游戏2

一、响应鼠标左键事件 pygame.MOUSEBUTTONDOWN 表示鼠标事件发生, pygame.mouse.get_pressed()[0] 确认是鼠标左键被按下 pygame.mouse.get_pos() 获取到鼠标按下时的坐标值。 因此,我们可以在事件逻辑中例用此三个函数判断鼠标事件及对应的坐标&#x…...

逻辑电路代数运算(上)

逻辑代数L是一个封闭的代数系统,由一个逻辑变量集K,常量0和1,以及与或非三种基本运算构成。 参与逻辑运算的变量叫逻辑变量,用字母A,B……表示。每个变量的取值非0 即1。 0、1不表示数的大小,而是代表两种不…...

Rabbit快速入门

入门案例 需求&#xff1a;使用简单模式完成消息传递 步骤&#xff1a; 创建工程&#xff08;生成者、消费者&#xff09; 分别添加依赖 编写生产者发送消息 编写消费者接收消息 3.1.2. 添加依赖 往heima-rabbitmq的pom.xml文件中添加如下依赖&#xff1a; <dependenc…...

【react+ts- forwardRef】

reactts- forwardRef1. 学习资料2. 普通input透传2.1 TS版本2.2 JS版本3. TS-Antd-Form组价透传引用传递&#xff08;Ref forwading&#xff09;是一种通过组件向子组件自动传递 引用ref 的技术。对于应用者的大多数组件来说没什么作用。但是对于有些重复使用的组件&#xff0c…...

计算机网络-- 网络层(day06)

文章目录网络层思维导图IPv4地址的应用规划定长的子网掩码变长的子网掩码VLSMIP数据报的发送和转发过程主机发送IP数据报路由器转发IP数据报静态路由选择动态路由选择路由选择协议概述常见的路由选择协议路由器的基本结构路由信息协议RIP的基本工作原理开放最短路径优先OSPF的基…...

docker 镜像

一、介绍 镜像:是一种轻量级、可执行的独立软件包,它包含运行某个软件所需的所有内容,我们把应用程序和配置依赖打包好形成一个可交付的运行环境(包括代码,运行时需要的库,环境变量和配置文件等)这个打包好的运行环境就是image镜像文件。 只有通过这个镜…...

JUC并发编程与源码分析笔记11-Java对象内存布局和对象头

先从阿里及其它大厂面试题说起 你觉得目前面试&#xff0c;你还有那些方面理解的比较好&#xff0c;我没问到的&#xff0c;我说了juc和jvm以及同步锁机制那先说juc吧&#xff0c;说下aqs的大致流程cas自旋锁&#xff0c;是获取不到锁就一直自旋吗?cas和synchronized区别在哪…...

JavaSE之集合篇

文章目录前言一、集合概述集合继承结构图二、Collection接口中常用方法2.1Collection中存放什么元素&#xff1f;2.2常用方法2.3迭代器三、List接口中常用的方法四、ArrayList初始化容量及扩容五、Vector六、Map接口常用方法七、Properties前言 由于在刷题过程中&#xff0c;经…...

LeetCode分类刷题-----贪心算法

贪心算法贪心455.分发饼干376.摆动序列53.最大子序和122.买卖股票的最佳时机||55.跳跃游戏45.跳跃游戏||1005.K次取反后最大化的数组和134.加油站135.分发糖果860.柠檬水找零406.根据身高重建队列452.用最少数量的箭引爆气球![在这里插入图片描述](https://img-blog.csdnimg.cn…...

SiteWhere开源物联网平台支持意大利都灵智能计量

这篇简短的文章描述了一个基于 SiteWhere 开源物联网平台的智慧城市用例。 SiteWhere总部位于佐治亚州亚特兰大&#xff0c;是一个开源物联网应用程序支持平台 (AEP)&#xff0c;提供两种解决方案。首先&#xff0c;SiteWhere 的社区版 (CE) 是在 CPAL 许可下提供的。对于此解…...

【unity】rts engine 6 放置并建造建筑;

一 放置并建造建筑 GameManager -> Essential -> BuildingExtension 查看 building placement building position y offset Y轴偏移&#xff0c;建筑离地距离&#xff0c;可0.1 terrain max distance 放置建筑与允许地形的最大距离&#xff0c;可1 placable terrain …...

华为OD机试题 - 任务调度(JavaScript)| 含思路

更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解: 任务调度题目输入输出描述示例一输入输出Code解题思路华为OD其…...

《Spring源码深度分析》第4章 自定义标签的解析

目录标题前言一、自定义标签使用二、自定义标签解析1、代码入口2、parseCustomElement【BeanDefinitionParserDelegate】2.1 resolve【DefaultNamespaceHandlerResolver】3、parse【NamespaceHandlerSupport】4、parse【AbstractBeanDefinitionParser】4.1 parseInternal【Abst…...

MATLAB绘制椭圆形相关系矩阵图

数据/代码准备 数据及代码下载&#xff1a; 下载专区-《MATLAB统计分析与应用&#xff1a;40个案例分析》程序与数据 绘图函数&#xff1a; matrixplot(data, PARAM1,val1, PARAM2,val2, ...) 案例 数据如下&#xff1a; MATLAB代码如下&#xff1a; clc close all clear …...

「SQL面试题库」 No_1 员工薪水中位数

&#x1f345; 1、专栏介绍 「SQL面试题库」是由 不是西红柿 发起&#xff0c;全员免费参与的SQL学习活动。我每天发布1道SQL面试真题&#xff0c;从简单到困难&#xff0c;涵盖所有SQL知识点&#xff0c;我敢保证只要做完这100道题&#xff0c;不仅能轻松搞定面试&#xff…...

Python机器学习17——极限学习机(ELM)

本系列基本不讲数学原理&#xff0c;只从代码角度去让读者们利用最简洁的Python代码实现机器学习方法。 背景&#xff1a; 极限学习机(ELM)也是学术界常用的一种机器学习算法&#xff0c;严格来说它应该属于神经网络&#xff0c;应该属于深度学习栏目&#xff0c;但是我这里把它…...

二分查找与判定树

二分查找的算法思想二分查找也称“折半查找”&#xff0c;要求查找表为采用顺序存储结构的有序表。本例一律采用升序排列。二分查找每一次都会比较给定值与序列[low,high]的中间元素&#xff0c;该元素的下标为mid (lowhigh)/2,若两者相等&#xff0c;则返回元素的下标为mid;如…...

反转链表(精美图示详解哦)

全文目录引言反转链表题目描述与思路实现总结引言 在学习了单链表的相关知识后&#xff0c;尝试实现一些题目可以帮助我们更好的理解单链表的结构以及对其的使用。 从这篇文章开始&#xff0c;将会介绍一些编程题来帮助我们更好的掌握单链表&#xff1a; 分别是反转链表、链表…...

深入理解多线程

一、线程基本概念 1、概述 线程是允许应用程序并发的一种机制。线程共享进程内的所有资源。 线程是调度的基本单位。 每个线程都有自己的 errno。 所有 pthread 函数均以返回 0 表示成功&#xff0c;返回一个正值表示失败。 编译 pthread 程序需要添加链接库&#xff08;…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

结构化文件管理实战:实现目录自动创建与归类

手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题&#xff0c;进而引发后续程序异常。使用工具进行标准化操作&#xff0c;能有效降低出错概率。 需要快速整理大量文件的技术用户而言&#xff0c;这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB&#xff0c;…...

python数据结构和算法(1)

数据结构和算法简介 数据结构&#xff1a;存储和组织数据的方式&#xff0c;决定了数据的存储方式和访问方式。 算法&#xff1a;解决问题的思维、步骤和方法。 程序 数据结构 算法 算法 算法的独立性 算法是独立存在的一种解决问题的方法和思想&#xff0c;对于算法而言&a…...

AI书签管理工具开发全记录(十八):书签导入导出

文章目录 AI书签管理工具开发全记录&#xff08;十八&#xff09;&#xff1a;书签导入导出1.前言 &#x1f4dd;2.书签结构分析 &#x1f4d6;3.书签示例 &#x1f4d1;4.书签文件结构定义描述 &#x1f523;4.1. ​整体文档结构​​4.2. ​核心元素类型​​4.3. ​层级关系4.…...

从0开始一篇文章学习Nginx

Nginx服务 HTTP介绍 ## HTTP协议是Hyper Text Transfer Protocol&#xff08;超文本传输协议&#xff09;的缩写,是用于从万维网&#xff08;WWW:World Wide Web &#xff09;服务器传输超文本到本地浏览器的传送协议。 ## HTTP工作在 TCP/IP协议体系中的TCP协议上&#…...

LeetCode 2894.分类求和并作差

目录 题目&#xff1a; 题目描述&#xff1a; 题目链接&#xff1a; 思路&#xff1a; 思路一详解&#xff08;遍历 判断&#xff09;&#xff1a; 思路二详解&#xff08;数学规律/公式&#xff09;&#xff1a; 代码&#xff1a; Java思路一&#xff08;遍历 判断&a…...