【牛牛送书 | 第四期】《高效使用Redis:一书学透数据存储与高可用集群》带你快速学习使用Redis
前言:
当今互联网技术日新月异,随着数据量的爆炸式增长,如何高效地存储和管理数据成为了每个公司都必须面对的挑战。与此同时,用户对于应用程序的响应速度和稳定性要求也越来越高。在这个背景下,Redis 作为一个高效、稳定、易用的内存数据库应运而生。
Redis 具有数据结构丰富、读写速度快、支持事务、发布订阅等诸多优点,使得它在缓存、会话存储、消息队列等场景中得到了广泛应用。尤其是在大规模分布式系统中,Redis 可以作为一个高速的分布式缓存,帮助提升应用程序的响应速度和吞吐量,从而提升用户体验和公司业务价值。
因此本期的送书活动将为大家介绍这本书: 《高效使用Redis:一书学透数据存储与高可用集群》。
目录
前言:
Redis是单线程的吗?
01 Redis中的多线程
02 I/O多线程
03 Redis中的多进程
04 结论
送书活动:
参与方式🥇

在此之前,我要先问大家一个常见的问题:
Redis是单线程的吗?
很多人都遇到过这么一道面试题:Redis是单线程还是多线程?这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程,说复杂是因为这个答案其实并不准确。
难道Redis不是单线程?我们启动一个Redis实例,验证一下就知道了。Redis安装部署方式如下所示:
// 下载
wget https://download.redis.io/redis-stable.tar.gz
tar -xzvf redis-stable.tar.gz
// 编译安装
cd redis-stable
make
// 验证是否安装成功
./src/redis-server -v
Redis server v=7.2.4
接下来启动Redis实例,使用命令ps查看所有线程,如下所示:
// 启动Redis实例
./src/redis-server ./redis.conf// 查看实例进程ID
ps aux | grep redis
root 385806 0.0 0.0 245472 11200 pts/2 Sl+ 17:32 0:00 ./src/redis-server 127.0.0.1:6379// 查看所有线程
ps -L -p 385806PID LWP TTY TIME CMD
385806 385806 pts/2 00:00:00 redis-server
385806 385809 pts/2 00:00:00 bio_close_file
385806 385810 pts/2 00:00:00 bio_aof
385806 385811 pts/2 00:00:00 bio_lazy_free
385806 385812 pts/2 00:00:00 jemalloc_bg_thd
385806 385813 pts/2 00:00:00 jemalloc_bg_thd
竟然有6个线程!不是说Redis是单线程吗?怎么会有这么多线程呢?
这6个线程的含义你可能不太了解,但是通过这个示例至少说明Redis并不是单线程。
01 Redis中的多线程
接下来我们逐个介绍上述6个线程的作用:
1)redis-server:
主线程,用于接收并处理客户端请求。
2)jemalloc_bg_thd
jemalloc 是新一代的内存分配器,Redis底层使用他管理内存。
3)bio_xxx:
以bio前缀开始的都是异步线程,用于异步执行一些耗时任务。其中,线程bio_close_file用于异步删除文件,线程bio_aof用于异步将AOF文件刷到磁盘,线程bio_lazy_free用于异步删除数据(懒删除)。
需要说明的是,主线程是通过队列将任务分发给异步线程的,并且这一操作是需要加锁的。主线程与异步线程的关系如下图所示:

主线程与异步线程
这里我们以懒删除为例,讲解为什么要使用异步线程。Redis是一款内存数据库,支持多种数据类型,包括字符串、列表、哈希表、集合等。思考一下,删除(DEL)列表类型数据的流程是怎样的呢?第一步从数据库字典中删除该键值对,第二步遍历并删除列表中的所有元素(释放内存)。想想如果列表中的元素数目非常多呢?这一步将非常耗时。这种删除方式称为同步删除,流程如下图所示:

同步删除流程图
针对上述问题,Redis提出了懒删除(异步删除),主线程在收到删除命令(UNLINK)时,首先从数据库字典中删除该键值对,随后再将删除任务分发给异步线程bio_lazy_free,由异步线程执行第二步耗时逻辑。这时候的流程如下图所示:

懒删除流程图
02 I/O多线程
难道Redis是多线程?那为什么我们老说Redis是单线程呢?这是因为读取客户端命令请求,执行命令以及向客户端返回结果都是在主线程完成的。不然的话,多线程同时操作内存数据库,并发问题如何解决?如果每次操作之前都加锁,那和单线程又有什么区别呢?
当然这一流程在Redis6.0版本也发生了改变,Redis官方指出,Redis是基于内存的键值对数据库,执行命令的过程是非常快的,读取客户端命令请求和向客户端返回结果(即网络I/O)通常会成为Redis的性能瓶颈。
因此,在Redis 6.0版本,作者加入了多线程I/O的能力,即可以开启多个I/O线程,并行读取客户端命令请求,并行向客户端返回结果。I/O多线程能力使得Redis性能提升至少一倍。
为了开启多线程I/O能力,需要先修改配置文件redis.conf:
io-threads-do-reads yes
io-threads 4
这两个配置含义如下:
-
io-threads-do-reads:是否开启多线程I/O能力,默认为"no";
-
io-threads:I/O线程数目,默认为1,即只使用主线程执行网络I/O,线程数最大为128;该配置应该根据CPU核数设置,作者建议,4核CPU设置2~3个I/O线程,8核CPU设置6个I/O线程。
开启多线程I/O能力之后,重新启动Redis实例,查看所有线程,结果如下:
ps -L -p 104648PID LWP TTY TIME CMD
104648 104648 pts/1 00:00:00 redis-server
104648 104654 pts/1 00:00:00 io_thd_1
104648 104655 pts/1 00:00:00 io_thd_2
104648 104656 pts/1 00:00:00 io_thd_3
……
由于我们设置了io-threads等于4,所以会创建4个线程用于执行I/O操作(包括主线程),上述结果符合预期。
当然,只有I/O阶段才使用了多线程,处理命令请求还是单线程,毕竟多线程操作内存数据存在并发问题。
最后,开启了I/O多线程之后,命令的执行流程如下图所示:

I/O多线程流程图
03 Redis中的多进程
Redis还有多进程?是的。在某些场景下,Redis也会创建多个子进程来执行一些任务。以持久化为例,Redis支持两种类型的持久化:
-
AOF(Append Only File):可以看作是命令的日志文件,Redis会将每一个写命令都追加到AOF文件。
-
RDB(Redis Database):以快照的方式存储Redis内存中的数据。命令SAVE用于手动触发RDB持久化。想想如果Redis中的数据量非常大,持久化操作必然耗时比较长,而Redis是单线程处理命令请求,那么当命令SAVE的执行时间过长时,必然会影响其他命令的执行。
命令SAVE有可能会阻塞其他请求,为此,Redis又引入了命令BGSAVE,该命令会创建一个子进程来执行持久化操作,这样就不会影响主进程执行其他请求了。
我们可以手动执行命令BGSAVE验证。首先,使用GDB跟踪Redis进程,添加断点,让子进程阻塞在持久化逻辑。如下所示:
// 查询Redis进程ID
ps aux | grep redis
root 448144 0.1 0.0 270060 11520 pts/1 tl+ 17:00 0:00 ./src/redis-server 127.0.0.1:6379// GDB跟踪进程
gdb -p 448144// 跟踪创建的子进程(默认GDB只跟踪主进程,需手动设置)
(gdb) set follow-fork-mode child
// 函数rdbSaveDb用于持久化数据快照
(gdb) b rdbSaveDb
Breakpoint 1 at 0x541a10: file rdb.c, line 1300.
(gdb) c
设置好断点之后,使用Redis客户端发送命令BGSAVE,结果如下:
// 请求立即返回
127.0.0.1:6379> bgsave
Background saving started// GDB输出以下信息
[New process 452541]
Breakpoint 1, rdbSaveDb (...) at rdb.c:1300
可以看到,GDB目前跟踪的是子进程,进程ID是452541。也可以通过Linux命令 ps 查看所有进程,结果如下:
ps aux | grep redis
root 448144 0.0 0.0 270060 11520 pts/1 Sl+ 17:00 0:00 ./src/redis-server 127.0.0.1:6379
root 452541 0.0 0.0 270064 11412 pts/1 t+ 17:19 0:00 redis-rdb-bgsave 127.0.0.1:6379
可以看到子进程的名称是redis-rdb-bgsave,也就是该进程将所有数据的快照持久化在RDB文件。
最后再思考两个问题。
问题1:为什么采用子进程而不是子线程呢?
因为RDB是将数据快照持久化存储,如果采用子线程,主线程与子线程将会共享内存数据,主线程在持久化的同时还会修改内存数据,这有可能导致数据不一致。而主进程与子进程的内存数据是完全隔离的,不存在此问题。
问题2:假设Redis内存中存储了10GB的数据,在创建子进程执行持久化操作之后,此时子进程也需要10GB的内存吗?复制10GB的内存数据,也会比较耗时吧?另外如果系统只有15GB的内存,还能执行BGSAVE命令吗?
这里有一个概念叫写时复制(copy on write),在使用系统调用fork创建子进程之后,主进程与子进程的内存数据暂时还是共享的,但是当主进程需要修改内存数据时,系统会自动将该内存块复制一份,以此实现内存数据的隔离。
命令BGSAVE的执行流程如下图所示:

BGSAVE执行流程
04 结论
Redis的进程模型/线程模型还是比较复杂的,这里也只是简单介绍了部分场景下的多线程以及多进程,其他场景下的多线程、多进程还有待读者自己研究。
作者介绍
李乐:好未来Golang开发专家、西安电子科技大学硕士,曾就职于滴滴,乐于钻研技术与源码,合著有《高效使用Redis:一书学透数据存储与高可用集群》《Redis5设计与源码分析》《Nginx底层设计与源码分析》。
送书活动:
《高效使用Redis:一书学透数据存储与高可用集群》

推荐语:深入Redis数据结构与底层实现,攻克Redis数据存储与集群管理难题。
参与方式🥇
参与方式🥇
抽奖方式:两周后评论区随机抽取若干名小伙伴送出!!参与方式:关注博主、点赞、收藏、评论区评论!!!
(切记要点赞 + 收藏,否则中奖无效,每人最多评论三次!!)
如果我的内容对你有帮助,请点赞,评论,收藏。创作不易,大家的支持就是我坚持下去的动力!
相关文章:
【牛牛送书 | 第四期】《高效使用Redis:一书学透数据存储与高可用集群》带你快速学习使用Redis
前言: 当今互联网技术日新月异,随着数据量的爆炸式增长,如何高效地存储和管理数据成为了每个公司都必须面对的挑战。与此同时,用户对于应用程序的响应速度和稳定性要求也越来越高。在这个背景下,Redis 作为一个…...
Threejs 实现3D影像地图,Json地图,地图下钻
1.使用threejs实现3D影像地图效果,整体效果看起来还可以,底层抽象了基类,实现了通用,对任意省份,城市都可以只替换数据,即可轻松实现效果。 效果如下: 链接https://www.bilibili.com/video/BV1…...
根据Excel创建管道系统及材质
之前看过程鑫老师的文章,介绍过根据Excel数据创建管道系统,但是有小伙伴问过我,照着他这个做,没成功,于是呢,我就想试下,结果发现也没成功。 然后我逐个节点过了一遍,发现可能是因为…...
第八篇【传奇开心果系列】python的文本和语音相互转换库技术点案例示例:Google Text-to-Speech虚拟现实(VR)沉浸式体验经典案例
传奇开心果博文系列 系列博文目录python的文本和语音相互转换库技术点案例示例系列 博文目录前言一、雏形示例代码二、扩展思路介绍三、虚拟导游示例代码四、交互式学习示例代码五、虚拟角色对话示例代码六、辅助用户界面示例代码七、实时语音交互示例代码八、多语言支持示例代…...
ubuntu使用LLVM官方发布的tar.xz来安装Clang编译器
ubuntu系统上的软件相比CentOS更新还是比较快的,但是还是难免有一些软件更新得不那么快,比如LLVM Clang编译器,目前ubuntu 22.04版本最高还只能安装LLVM 15,而LLVM 18 rc版本都出来了。参见https://github.com/llvm/llvm-project/…...
Windows 远程控制 Mac 电脑怎么操作
要从 Windows 远程控制 Mac 电脑,您可以使用内置 macOS 功能或第三方软件解决方案。以下是一些方法: 一、使用内置 macOS 功能(屏幕共享) 1、在 macOS 上启用屏幕共享 转至系统偏好设置 > 共享;选中“屏幕共享”…...
c# HttpCookie操作,建立cookie工具类
HttpCookie 是一个在.NET Framework中用于管理和操作HTTP Cookie的类。它提供了一种方便的方式来创建、设置、读取和删除Cookie。 Cookie是一种在客户端和服务器之间传递数据的机制,用于跟踪用户的会话状态和存储用户相关的信息。它通常由服务器发送给客户端&#…...
【这个词(Sequence-to-Sequence)在深度学习中怎么解释,有什么作用?】
🚀 作者 :“码上有前” 🚀 文章简介 :深度学习笔记 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 Sequence-to-Sequence(Seq2Seq) Sequence-to-Sequence(Seq2Seq…...
挑战30天学完Python:Day16 日期时间
📘 Day 16 🎉 本系列为Python基础学习,原稿来源于 30-Days-Of-Python 英文项目,大奇主要是对其本地化翻译、逐条验证和补充,想通过30天完成正儿八经的系统化实践。此系列适合零基础同学,或仅了解Python一点…...
Web3之光:揭秘数字创新的未来
随着数字化时代的深入发展,Web3正以其独特的技术和理念,为我们打开数字创新的崭新视角。作为数字化时代的新兴力量,Web3将深刻影响着我们的生活、工作和社会。本文将揭秘Web3的奥秘,探讨其在数字创新领域的前景和潜力。 1. 重新定…...
Stable Diffusio——采样方法使用与原理详解
简介 当使用稳定扩散(Stable Diffusion)技术生成图像时,首先会生成一张带有噪声的图像。然后,通过一系列步骤逐渐去除图像中的噪声,这个过程类似于从一块毛坯的白色大理石开始,经过多日的精细雕刻…...
小米14 ULTRA:重新定义手机摄影的新篇章
引言 随着科技的飞速发展,智能手机已经不仅仅是一个通讯工具,它更是我们生活中的一位全能伙伴。作为科技领域的佼佼者,小米公司再次引领潮流,推出了全新旗舰手机——小米14 ULTRA。这款手机不仅在性能上进行了全面升级&am…...
【leetcode热题】路径总和 II
难度: 中等通过率: 38.7%题目链接:. - 力扣(LeetCode) 题目描述 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。 说明: 叶子节点是指没有子节点的节点。 示例: …...
ChatGPT在数据处理中的应用
ChatGPT在数据处理中的应用 今天的这篇文章,让我不断体会AI的强大,愿人类社会在AI的助力下走向更加灿烂辉煌的明天。 扫描下面二维码注册 数据处理是贯穿整个数据分析过程的关键步骤,主要是对数据进行各种操作,以达到最终的…...
微服务-Alibaba微服务nacos实战
1. Nacos配置中心 1.1 微服务为什么需要配置中心 在微服务架构中,当系统从一个单体应用,被拆分成分布式系统上一个个服务节点后,配置文件也必须跟着迁移(分割),这样配置就分散了,不仅如此&…...
Linux Driver | 设备树开发之初识设备树
Linux Driver | 设备树开发之初识设备树 时间:2024年2月22日20:35:13 文章目录 **Linux Driver** | 设备树开发之初识设备树参考1.设备树开发2.`Linux`设备树的由来3.`Linux`设备树的由来-为什么会有设备树4.设备树的由来5.快速编译设备树---**DTC** (`device tree compiler`)…...
2月24日(周六)比赛前瞻:曼联 VS 富勒姆、拜仁 VS 莱比锡
大家好,博主将持续更新胜负14场前瞻,此处每日赛事间歇更新,胃信号每日更新。 精选赛事:曼联 VS 富勒姆 曼联近期状态显著提升,上一轮联赛客场2-1战胜卢顿,连续7场正赛取得6胜1平的成绩,保持不败…...
React18源码: task任务调度和时间分片
任务队列管理 调度的目的是为了消费任务,接下来就具体分析任务队列是如何管理与实现的 在 Scheduler.js 中,维护了一个 taskQueue, 任务队列管理就是围绕这个 taskQueue 展开 // Tasks are stored on a min heap var taskQueue - []; var timerQueue …...
【工具类】阿里域名关联ip(python版)
获取代码如下 # codingutf-8import argparse import json import urllib import logging# 加载 ali 核心 SDK from aliyunsdkcore.client import AcsClient from aliyunsdkalidns.request.v20150109 import (DescribeSubDomainRecordsRequest,AddDomainRecordRequest,UpdateDo…...
STM32自学☞输入捕获测频率和占空比案例
本文是通过PA0口输出PWM波,然后通过PA6口捕获PWM波的频率和占空比,最终在oled屏上显示我们自己设置的频率和占空比。由于和前面的pwm呼吸灯代码有重合部分所以本文中的代码由前者修改而来,对于文件命名不要在意。 pwm_led.c文件 /* 编写步…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
