当前位置: 首页 > news >正文

Sora横空出世!AI将如何撬动未来?

近日,OpenAI 发布首个视频生成“Sora”模型,该模型通过接收文字指令,即可生成60秒的短视频。

在这里插入图片描述

而在2022年末,同样是OpenAI发布的AI语言模型ChatGPT,简化了文本撰写、创意构思以及代码校验等任务。用户仅需输入一个指令,ChatGPT便能生成图片、文字或代码等多种形式的内容。

这一系列的进展不仅仅是技术上的突破,它们预示着一场全面的AI革命的到来,影响范围远超从前。AI技术的应用已经拓展到聊天机器人、绘图、音乐创作、代码生成、视频生成等领域,每一次迭代和升级都引起了全球的关注和热议。

在编程领域,AI的崛起,如ChatGPT和Github Copilot,正在改变开发者获取信息和编写代码的方式。在Andrej Karpathy的博客《Software 2.0》中,他探讨了人工智能如何改变软件开发方式:“Software 2.0代表着我们可以用大量的数据和算力来解决以前需要大量人力和成本来解决的复杂问题。” AI 编码助手则是上述的具体实现。

在这里插入图片描述

资料图片来源:Github

调查数据显示,AI编码工具不仅提高了整体生产力,还带来了技能提升的机会。75%的开发者表示在使用GitHub Copilot时感到更加充实,在具体的生产数据方面,Copilot能够完成高达46%的代码,帮助开发人员将编程速度提高了 55%。

大模型给已有的开发工作“降本增效”

未来的编码工作流程将呈现全新的面貌:AI 编码工具将可以大量生成短期的软件和测试解决方案,不再追求长期的可重复利用性,由于生产过程的高效自动化,未来的推理成本、推理延迟性都将大幅降低。另一方面,工程发展好坏并非在理论上有挑战,而是在工程实践中的持续优化和迭代,这主要体现在未来代码大模型将被提炼成中小型模型,从而实现在边缘设备运行的可能性。

在代码训练推理领域,实际上并不需要前后的历史知识和上下需要索引人文典故,可以预见的将来大模型会逐渐蒸馏成一个中小型模型,可能是70个亿的参数、10个亿参数或者100亿参数,这种规模就已经非常有效果了。

相对较小的模型让在边缘设备、个人电脑上的大模型运行成为可能。此外,硬件架构的升级让消费级硬件能够运行更大规模的模型,目前强大的Mac Pro等已经可以承载数百亿参数的模型。随着这种参数量化的发展,更多模型将能在边缘设备上运行,这是功能上的进步,并不涉及理论上的难点。这种发展在未来几年内将变得更加普遍。

同时**随着生成式 AI 的发展,编程语言之间的差异变得不再那么明显。随之带来的是编程语言的学习门槛降低。**目前学习一门新的编程语言,其中一个关键点在于掌握其生态系统,包括语法和库的使用。举个例子,区分成熟的 Java 工程师和专业的 Java 工程师的主要因素之一是对各种库的熟悉程度和使用直觉。

未来,生成式AI的存在可能极大地简化这一过程。例如,当需要进行 JSON 解析时,生成式 AI 可以自动推荐合适的库。这就像有一个助手在一旁,不仅帮助选择合适的工具,还可以解释不熟悉的代码片段。因此,学习新语言将变得更加直观和简单。

这种变化预示着未来编程的重点可能会从对工具的关注转移到提供端到端体验上,开发者可以更加专注于创意和解决方案的实现,而不是编码的具体细节。

面向未来:MoonBit——为AI原生应用打造的编程语言

正是在这样的背景下,MoonBit应运而生。MoonBit在2022年10月推出,此时恰逢ChatGPT刚刚问世。MoonBit平台的出现不仅仅作为一种编程语言,更是提供一个完整的开发工具链,包括IDE、编译器、构建系统、包管理器等。我们处在一个特殊的位置,有机会去重新构想整个编程语言工具链该如何与AI更好地协作,开启了编程与AI结合的新篇章。

在不断的探索中,我们的努力得到了学术界的认可。最近,MoonBit团队的研究论文「MoonBit: Explore the Design of an AI-Friendly Programming Language」已经荣幸地被LLM4Code 2024接收!

在这里插入图片描述

同时,我们在ai.moonbitlang.com上设计了一个简单的MoonBit AI demo,非常欢迎你来尝试!我们也非常期待你的反馈,可以随时通过我们的论坛/微信小助手/用户群等渠道进行反馈。

让我们看看下面的视频,更具体地了解使用MoonBit AI进行端到端开发的体验是什么样子:

从上面的视频可以看到,不同于ChatGPT,MoonBit AI可以实现从需求设定到代码实现,再到运行调试的无缝衔接,确保编程过程更加流畅高效。用户可以实时修改MoonBit AI生成的代码,获得即时反馈。同时,MoonBit AI重视用户体验,为大家提供一个更加便捷易用的用户界面。无论你是编程新手还是资深的开发者,都能轻松上手。

在文章接下来的部分,我们主要将讨论两个主要方面:

  1. MoonBit如何设计成一种出色的、对AI友好的编程语言
  2. 是什么驱动了MoonBit AI

MoonBit:平坦化设计,适配Transformer架构

MoonBit作为AI时代的开发平台,设计强调清晰和简单,特别强调在顶层(toplevel)和局部(local)定义之间的清晰区分。MoonBit还采用了结构化接口实现(structural interface implementation),在这种方式中,一个类型通过实现其方法来实现一个接口,因此消除了额外嵌套代码块的必要性。

现有的大模型基本都基于自回归的 Transformer 架构。这意味着随着上下文窗口增长,生成单个 token 的复杂度呈 n² 上升。也就是说,大模型的推理会越来越慢。一个没有嵌套的编程语言有着较好的可读性,同时也能够在各个层级(RAG,decoder correction,backtrack)做到 KV 缓存友好,实现更高的推理速度。

让我们一起来看一个例子:

在图1(a)中所示的例子中,一名程序员正在为类型Llama实现特性Agent中的方法think。他们发现类型Llama缺少在特性LLM中定义的generation方法。由于他们处于一个嵌套代码块中,需要回到顶层来为类型Llama实现特性LLM。然而,在大型语言模型(LLMs)的上下文中,修改几个函数之前的提示会导致相关KV缓存段的无效,这在图中以红色突出显示。经过这样的修改,所有这些函数都要重新评估,这不仅浪费了计算资源,更关键的是,延长了输出的延迟时间。

相比之下,如图1(b)所示,MoonBit允许程序员和大型语言模型(LLMs)线性地开发他们的程序,无需频繁地来回跳转。通过结构化接口,实现接口的函数不限于特定的代码块。这允许几乎线性地生成接口及其各自的实现,从而有效地最大化利用KV缓存。

在这里插入图片描述

图1

MoonBit AI:快速实时的语义补全

MoonBit AI由两种定制的采样算法驱动:局部采样和全局采样。局部采样使用AI生成的代码进行实时调整,以确保代码遵循语法规范,而全局采样进一步验证代码的语义正确性。随着大型语言模型(LLM)生成新的token,MoonBit采样器将从局部和全局收集并利用信息,以确保每个生成的token不仅在语法上正确,而且没有明显的类型错误。这种方法提供了更可靠、更准确的代码生成,减少了后续调试和错误纠正的需要。

例如,当LLM编写程序时,它可能会生成一个不好的token。我们维护一个推测缓冲区来存储最后一个token。一旦token由LLM完成,我们将检查token是否有效。如果有效,我们接受它并将其提交给用户,如果不有效,我们就回溯并重试。为了防止LLM重复同样的错误,我们将告知LLM可能的继续操作,以做出更好的选择。

在这里插入图片描述

我们的实验显示,MoonBit采样器在编译率方面取得了显著提高,性能损失仅约3%。

在这里插入图片描述

当然,这只是个开始!

我们目前正在搭建一个包管理器,这对于收集额外数据以微调模型至关重要。未来,我们将持续增强MoonBit AI能力,包括加入代码辅助、审查、问答界面、测试生成和验证机制等功能。同时,我们正计划开发一个快速解释器,在运行时提供实时反馈。这将进一步提高AI生成代码的可靠性。

欢迎持续关注MoonBit AI的进展!

相关文章:

Sora横空出世!AI将如何撬动未来?

近日,OpenAI 发布首个视频生成“Sora”模型,该模型通过接收文字指令,即可生成60秒的短视频。 而在2022年末,同样是OpenAI发布的AI语言模型ChatGPT,简化了文本撰写、创意构思以及代码校验等任务。用户仅需输入一个指令&…...

Selenium浏览器自动化测试框架详解

selenium简介 介绍 Selenium [1] 是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Google C…...

XGB-11:随机森林

XGBoost通常用于训练梯度提升决策树和其他梯度提升模型。随机森林使用与梯度提升决策树相同的模型表示和推断,但使用不同的训练算法。可以使用XGBoost来训练独立的随机森林,或者将随机森林作为梯度提升的基模型。这里我们专注于训练独立的随机森林。 XG…...

超平面介绍

超平面公式 (1) 超平面是指n维线性空间中维度为n-1的子空间。它可以把线性空间分割成不相交的两部分。比如二维空间中,一条直线是一维的,它把平面分成了两部分;三维空间中,一个平面是二维的,它把空间分成了两部分。(2…...

【苍穹外卖】一些开发总结

1、DTO、VO的区别 DTO:如果前端返回的实体类和对应的实体类比较较大差别 使用DTO来封装数据 后面在使用 BeanUtils.copyProperties() 将熟悉复制到对应的实体类中 VO:主要用于展示数据,例如在控制器层和视图层之间。它通常包含一些与显示相关的属性,如标题、描述等。 2…...

Python 3 中,`asynchat`异步通信

在 Python 3 中,asynchat 是基于 asyncore 的一个高层抽象模块,用于处理异步通信协议。它提供了一种简单的方式来创建自定义的异步通信协议,并处理通信中的错误和异常。 asynchat 模块主要作用是将网络数据流分割成消息或者数据包&#xff0…...

RAW 编程接口 TCP 简介

一、LWIP 中 中 RAW API 编程接口中与 TCP 相关的函数 二、LWIP TCP RAW API 函数 三、LwIP_Periodic_Handle函数 LwIP_Periodic_Handle 函数是一个必须被无限循环调用的 LwIP支持函数,一般在 main函数的无限循环中调用,主要功能是为 LwIP各个模块提供…...

Oracle EBS FA折旧回滚的分录追溯

FA模块向子分类账和总账追溯分为两部分:事务表和折旧,但是FA相关表做其实关联计划外折旧的分录会被遗漏的原因: 如果已经当月折旧,运行完成折旧后,又进行了计划外折旧,因为计划折旧时又要区分【是否进行当月…...

sql注入 [极客大挑战 2019]FinalSQL1

打开题目 点击1到5号的结果 1号 2号 3号 4号 5号 这里直接令传入的id6 传入id1^1^1 逻辑符号|会被检测到,而&感觉成了注释符,&之后的内容都被替换掉了。 传入id1|1 直接盲注比较慢,还需要利用二分法来编写脚本 这里利用到大佬的脚…...

持续集成,持续交付和持续部署的概念,以及GitLab CI / CD的介绍

引言:上一期我们部署好了gitlab极狐网页版,今天我们介绍一下GitLabCI / CD 目录 一、为什么要 CI / CD 方法 1、持续集成 2、持续交付 3、持续部署 二、GitLab CI / CD简介 三、GitLab CI / CD 的工作原理 4、基本CI / CD工作流程 5、首次设置 …...

[Java 项目亮点] 三层限流设计

思路来源:bilibili 河北王校长 文章目录 面试官可能会问你能详细介绍一下Nginx的http_limit_req_module模块吗?你能解释一下如何在Nginx中配置http_limit_req_module模块吗?你知道如何调整Nginx的http_limit_req_module模块以适应不同的业务需…...

GPT-SoVITS 快速声音克隆使用案例:webui、api接口

参考: https://github.com/RVC-Boss/GPT-SoVITS 环境: Python 3.10 PyTorch 2.1.2, CUDA 12.0 安装包: 1、使用: 1)下载项目 git clone https://github.com/RVC-Boss/GPT-SoVITS.git2)下载预训练模型 https://huggingface.co/lj1995/GPT-SoVITS 下载模型文件放到GPT…...

高速自动驾驶智慧匝道(HIC)系统功能规范

智慧匝道功能规范 Highway Intelligent Change Functional Specification 文件状态: 【√】草稿 【】正式发布 【】正在修改 文件起草分工 撰写: 审核: 编制: 签名: 日期: 审核: 签名&am…...

SQL Server——建表时为字段添加注释

在 MySQL 中,新建数据库表为字段添加注释可以使用 comment 属性来实现。SQL Server 没有 comment 属性,但是可以通过执行 sys.sp_addextendedproperty 这个存储过程添加扩展属性来实现相同的功能。 这个存储过程的参数定义如下: exec sys.s…...

【明道云】导入Excel数据时的默认顺序

【背景】 明道云导入Excel过程中由于数据问题往往会有一些需要补录的地方。这种情况下就需要已上传到线上的数据和本地Excel的记录顺序完全一致才方便对比。因此需要清除如何让两者的记录顺序一致。 【分析】 经过多次排序对比,考虑到分页的影响,发现…...

几种后端开发中常用的语言。

几种后端开发中常用的语言。 C/C 语言 C 语言最初是用于系统开发工作,特别是组成操作系统的程序。由于 C 语言所产生的代码运行速度与汇编语言编写的代码运行速度几乎一样,所以采用 C 语言作为系统开发语言。目前,C 语言是最广泛使用的系统…...

Sora——探索AI视频模型的无限可能

Sora - 探索AI视频模型的无限可能 Sora作为OpenAI发布的一款AI视频模型,其探索的无限可能性表现在多个方面。首先,从技术的角度来看,Sora将文本生成图像的技术扩展到了视频领域,实现了从文字描述到视频内容的自动生成。这种技术突…...

[NCTF2019]True XML cookbook --不会编程的崽

题目的提示很明显了&#xff0c;就是xxe攻击&#xff0c;直接抓包。 <?xml version "1.0"?> <!DOCTYPE ANY [ <!ENTITY xxe SYSTEM "file:///etc/passwd" > ]> <user><username> &xxe; </username><passwor…...

Qt 应用程序中指定使用桌面版本的 OpenGL或嵌入式系统OpenGL ES的 API 进行渲染

qputenv(“QT_OPENGL”, “desktop”) 是用于在 Qt 应用程序中指定使用桌面版本的 OpenGL API 进行渲染。 具体来说&#xff0c;qputenv 是 Qt 提供的一个环境变量设置函数&#xff0c;它允许开发者在程序运行时设置环境变量。在这个例子中&#xff0c;环境变量 QT_OPENGL 被设…...

大数据软件,待补充

数据采集&#xff1a; 实时采集&#xff1a; Debezuim Debezuim是构建在 Apach Kafka之上&#xff0c;并提供Kafka连接器来监视特定的数据库管理(采集多种数据库) Canal canal 是阿里开发&#xff0c;用于实时采集Mysql 当中变化的数据 maxwell,flinkX,flinkCDC 离线采集&#…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...