Biomod2 (下):物种分布模型建模
这里写目录标题
- 1.给出一个线性回归模型并求出因子贡献度
- 2.biomod2
- 2.1 pseudo-absences:伪不存在点(PA)
- 2.1.1 random
- 2.2.2 disk
- 2.2.3 user.defined method
- 3.使用网格划分区域
- 3.1 计算质心
- 4. 完整案例
1.给出一个线性回归模型并求出因子贡献度
##-----------------------------------------------------------------------------
# 线性回归模型
lm_df <- data.frame(x = iris$Sepal.Length,y = iris$Sepal.Width)
lm_model <- lm(data = lm_df,y ~ x)
broom::tidy(lm_model)ggplot(data = lm_df,aes(x,y))+geom_point()+geom_smooth(method = lm, se = FALSE)# 变量重要性
install.packages("vip")
install.packages('mlbench')
library(vip)
set.seed(100)
trn <- as.data.frame(mlbench::mlbench.friedman1(500))
linmod <- lm(y ~ .^2, data = trn)
backward <- step(linmod, direction = "backward", trace = 0)
# 计算贡献度
vi(backward)# 可视化
p1 <- vip(backward, num_features = length(coef(backward)), geom = "point", horizontal = FALSE)
p2 <- vip(backward, num_features = length(coef(backward)), geom = "point", horizontal = FALSE, mapping = aes_string(color = "Sign"))
grid.arrange(p1, p2, nrow = 1)
结果展示:

图像绘制:

重要性结果展示:

2.biomod2

首先需要安装biomod2包:install.packages(“biomod2”)
最终生成的文件为individual_projections,该文件夹中包括.img、.xml两种数据格式,其中包括很多算法如,GLM,RF,SRE,ANN,CTA,FDA,CTA等多种模型 ,这类似于一个集成算法,集合多个模型,求取模型的平均值,以得出一个更好的模型。
##-----------------------------------------------------------------------------
# 加载成都市的适量边界图,后面会用到
library(mapchina)
cd_sf <- mapchina::china %>%dplyr::filter(Name_Perfecture == "成都市") %>%group_by(Name_Province) %>%summarise(geometry = sf::st_union(geometry)) %>%ungroup()
colnames(cd_sf) # see all variable names
plot(cd_sf)#install.packages("biomod2")
library(biomod2) ?biomod2::BIOMOD_FormatingData()
#
2.1 pseudo-absences:伪不存在点(PA)
生成PA点的四种方法:random、disk、sre、user.table
2.1.1 random
随机选择PA点
##--------------------------------------------------------------------------------
# 1.the random method : PA are randomly selected over the studied area (excluding presence points)
library(sf)
p1_random <- sf::st_sample(cd_sf,300)
ggplot()+geom_sf(data = cd_sf)+geom_sf(data = p1_random)
结果展示:

2.2.2 disk
# 2.the disk method : PA are randomly selected within circles around presence
# points defined by a minimum and a maximum distance values (defined in meters).
## Format Data with pseudo-absences : disk method
# myBiomodData.d <- BIOMOD_FormatingData(resp.var = myResp.PA,
# expl.var = myExpl,
# resp.xy = myRespXY,
# resp.name = myRespName,
# PA.nb.rep = 4,
# PA.nb.absences = 500,
# PA.strategy = 'disk',
# PA.dist.min = 5,
# PA.dist.max = 35) # 生成环形缓冲区
pts_presence <- sf::st_sample(cd_sf,300)
pts_presence

#使用生成的第一个点画圆
st_buffer(pts_presence[[1]], dist = 1) %>% plot()
plot(pts_presence[[1]],add = TRUE)
结果展示:

2.2.3 user.defined method
##-------------------------------------------------------------------------------------
#用户自定义
## Format Data with pseudo-absences : user.defined method
# myPAtable <- data.frame(PA1 = ifelse(myResp == 1, TRUE, FALSE),
# PA2 = ifelse(myResp == 1, TRUE, FALSE))
# for (i in 1:ncol(myPAtable)) myPAtable[sample(which(myPAtable[, i] == FALSE), 500), i] = TRUE
# myBiomodData.u <- BIOMOD_FormatingData(resp.var = myResp.PA,
# expl.var = myExpl,
# resp.xy = myRespXY,
# resp.name = myRespName,
# PA.strategy = 'user.defined',
# PA.user.table = myPAtable)
pts_absence <- pts_presence %>% st_as_sf() %>% mutate(id = 1:n()) %>%group_by(id) %>%nest(data = -id) %>% mutate(circle = purrr::map(.x = data,.f = function(x) {st_buffer(x = x,dist = 1)})) %>% mutate(point = purrr::map(.x = circle,.f = function(x) {st_sample(x,1)})) %>% dplyr::select(point) %>% unnest() %>% ungroup() %>% dplyr::select(-id)
pts_absence

格式转换:
# 将生成的点转换为数据框格式
#install.packages('sfheaders')
library(sfheaders)
pts_absence %>% st_as_sf() %>% sfheaders::sf_to_df() %>% dplyr::select(x,y) %>% mutate(label = "absence") %>% head()

3.使用网格划分区域
##----------------------------------------------------------------------------------
# 网格划分,形成栅格图像
cd_grid <- cd_sf %>% st_make_grid(cellsize = 0.2) %>%st_intersection(cd_sf) %>%st_cast("MULTIPOLYGON") %>%st_sf() %>%mutate(cellid = row_number())
plot(cd_grid)

为每个网格添加标签:
#devtools::install_github("yutannihilation/ggsflabel")
ggplot(data = cd_grid)+geom_sf()+ggsflabel::geom_sf_label(aes(label = cellid))+theme_light()

3.1 计算质心
# 计算质心
library(terra)
library(tidyterra)
library(ggplot2)bj_dem <- raster("D:/Datasets/w001001.adf")
plot(bj_dem)(sp_sf <- bj_dem %>% calc(x = .,fun = function(x) ifelse(x < 100,x,NA)) %>% # 按属性筛选rasterToPolygons() %>% st_as_sf() %>% summarise(geometry = st_union(geometry)) %>% st_make_valid())
plot(sp_sf)


centroid <- st_centroid(sp_sf)ggplot()+geom_spatraster(data = rast(bj_dem)) +scale_fill_whitebox_c(palette = "muted",na.value = "white")+geom_sf(data = sp_sf,alpha = 0,color = "blue")+geom_sf(data = centroid,size = 3,color = "red")

4. 完整案例
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)# Select the name of the studied species
myRespName <- 'GuloGulo'# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)## --------------------------------------------------------------------------------
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,expl.var = myExpl,resp.xy = myRespXY,resp.name = myRespName)
myBiomodData
summary(myBiomodData)
plot(myBiomodData)
物种分布数据:


相关文章:
Biomod2 (下):物种分布模型建模
这里写目录标题1.给出一个线性回归模型并求出因子贡献度2.biomod22.1 pseudo-absences:伪不存在点(PA)2.1.1 random2.2.2 disk2.2.3 user.defined method3.使用网格划分区域3.1 计算质心4. 完整案例1.给出一个线性回归模型并求出因子贡献度 ##---------…...
Linux性能学习(2.2):内存_进程线程内存分配机制探究
文章目录1 进程内存分配探究1.1 代码1.2 试验过程2 线程内存分配探究2.1 代码2.2 试验过程3 总结参考资料:1. 嵌入式软件开发杂谈(3):Linux下内存与虚拟内存2. 嵌入式软件开发杂谈(1):Linux下最…...
BPMN2.0规范及流程引擎选型方案
BPMN2.0规范及流程引擎选型方案一、基本概念二、BPMN意义三、主要元素3.1 活动任务子流程调用活动事件子流程事务3.2 网关排他网关包容网关并行网关事件网关3.3 事件开始事件结束事件中间事件3.4 辅助泳道图注释与组数据存储四、图类型4.1 编排图4.2 会话图五、技术选型5.1 前端…...
VMware虚拟机安装Linux教程
前言 本文小新为大家带来 VMware虚拟机安装Linux教程 ,后边将为大家分享Linux系统的相关知识与操作,在此之前的第一步我们需要在我们的电脑上搭建好一个Linux系统的环境,本文的具体内容包括VMware虚拟机软件安装与Linux系统安装~ 不积跬步&a…...
多人协作|RecyclerView列表模块新架构设计
多人协作|RecyclerView列表模块新架构设计多人协作设计图新架构设计与实现设计背景与新需求新架构设计多人协作设计图 根据产品设计,将首页列表即将展示内容区域,以模块划分成多个。令团队开发成员分别承接不同模块进行开发,且互不影响任务开…...
SpringBoot (六) 整合配置文件 @Value、ConfigurationProperties
哈喽,大家好,我是有勇气的牛排(全网同名)🐮🐮🐮 有问题的小伙伴欢迎在文末评论,点赞、收藏是对我最大的支持!!!。 1 使用 Value 注解 /** Auth…...
docker 入门篇
docker为什么会出现? 一款产品:开发---->运维,两套环境!应用环境,应用配置! 常见问题:我的电脑可以运行,版本更新,导致服务不可用。 环境配置十分的麻烦,…...
MapReduce的shuffle过程详解
shuffle流程概括 因为频繁的磁盘I/O操作会严重的降低效率,因此“中间结果”不会立马写入磁盘,而是优先存储到Map节点的“环形内存缓冲区”,在写入的过程中进行分区(partition),也就是对于每个键值对来说&a…...
【软件使用】MarkText下载安装与汉化设置 (markdown快捷键收藏)
一、安装与汉化 对版本没要求的可以直接选择 3、免安装的汉化包 1、下载安装MarkText MaxText win64 https://github.com/marktext/marktext/releases/download/v0.17.1/marktext-setup.exe 使用迅雷可以快速下载 2. 配置中文语言包 中文包下载地址:GitHub - chi…...
LeetCode笔记:Biweekly Contest 99
LeetCode笔记:Biweekly Contest 99 1. 题目一 1. 解题思路2. 代码实现 2. 题目二 1. 解题思路2. 代码实现 3. 题目三 1. 解题思路2. 代码实现 4. 题目四 1. 解题思路2. 代码实现 比赛链接:https://leetcode.com/contest/biweekly-contest-99 1. 题目一…...
初探富文本之CRDT协同实例
初探富文本之CRDT协同实例 在前边初探富文本之CRDT协同算法一文中我们探讨了为什么需要协同、分布式的最终一致性理论、偏序集与半格的概念、为什么需要有偏序关系、如何通过数据结构避免冲突、分布式系统如何进行同步调度等等,这些属于完成协同所需要了解的基础知…...
团队死气沉沉?10种玩法激活你的项目团队拥有超强凝聚力
作为项目经理和PMO,以及管理者最头疼的是团队的氛围和凝聚力,经常会发现团队死气沉沉,默不作声,你想尽办法也不能激活团队,也很难凝聚团队。这样的项目团队你很难带领大家去打胜仗,攻克堡垒。但是如何才能避…...
Spring三级缓存核心思想
spring在启动时候,会创建bean,并给bean填充属性,这事会使用到三级缓存 private final Map<String, Object> singletonObjects new ConcurrentHashMap<>(256); //一级缓存private final Map<String, Object> earlySingleto…...
深度学习算法训练和部署流程介绍--让初学者一篇文章彻底理解算法训练和部署流程
目录 1 什么是深度学习算法 2 算法训练 2.1 训练的原理 2.2 名词解释 3 算法C部署 3.1 嵌入式终端板子部署 3.3.1 tpu npu推理 3.3.2 cpu推理 3.2 服务器部署 3.2.1 智能推理 3.2.2 CPU推理 1 什么是深度学习算法 这里不去写复杂的概念,就用通俗的话说…...
计算机网络整理
TCP与UDP 介绍 HTTP:(HyperText Transport Protocol)是超文本传输协议的缩写,它用于传送WWW方式的数据,关于HTTP协议的详细内容请参考RFC2616。HTTP协议采用了请求/响应模型。 TCP:(Transmission Contro…...
闲人闲谈PS之三十八——混合制生产下WBS-BOM价格发布增强
惯例闲话:最近中《三体》的毒很深,可能是电视剧版确实给闲人这种原著粉带来太多的感动,又一次引发了怀旧的热潮,《我的三体-罗辑传》是每天睡前必刷的视频,结尾BGM太燃了。闲人对其中一句台词感触很深——人类不感谢罗…...
Java 根类 Object
java.lang.Object 是 Java 类层次结构中的根类,所有类都直接或间接实现了此类的方法。 Object API 源码 package java.lang;public class Object {private static native void registerNatives();static {registerNatives();}public final native Class<?>…...
04_Apache Pulsar的可视化监控管理、Apache Pulsar的可视化监控部署
1.4.Apache Pulsar的可视化监控管理 1.4.1.Apache Pulsar的可视化监控部署 1.4.Apache Pulsar的可视化监控管理 1.4.1.Apache Pulsar的可视化监控部署 第一步:下载Pulsar-Manager https://archive.apache.org/dist/pulsar/pulsar-manager/pulsar-manager-0.2.0/…...
【算法】期末复盘,酒店住宿问题——勿向思想僵化前进
文章目录前言题目描述卡在哪里代码(C)前言 省流:一个人也可以住双人间,如果便宜的话。 害!尚正值青春年华,黄金岁月,小脑瓜子就已经不灵光咯。好在我在考试的最后一分钟还是成功通过了这题&am…...
Java中的Comparator 与 Comparable详解
Comparator VS Comparable1. Comparator1.1 对一维数组进行排序1.2 对二维数组进行排序1.3 对对象数组进行排序2. Comparable3. 二者区别1. Comparator 通过源码发现Comparator是一个接口。 根据compare方法中的注释可以发现方法返回三种类型的值,正数、零、负数&a…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
