pytorch简单新型模型测试参数
import torch
from torch.nn import Conv2d,MaxPool2d,Sequential,Flatten,Linear
import torchvision
import torch.optim.optimizer
from torch.utils.data import DataLoader,dataset
from torch import nn
import torch.optim.optimizer# 建模
model = nn.Linear(2,1)#损失
loss = nn.MSELoss()
#优化
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.8)#定义输入和标签
input = torch.tensor([[2.,7.],[1.,6.]])
y = torch.tensor([[1.],[3.]])#输入模型数据
out= model(input)
print(out)
#计算损失
loss_fn = loss(y,out)
print(loss_fn.item())
#梯度清零
optimizer.zero_grad()
#反向传播
loss_fn.backward()
print(loss_fn.item())
#更新梯度
optimizer.step()# 再次进行前向传播和反向传播
x = torch.tensor([[5., 6.], [7., 8.]])
y_true = torch.tensor([[11.], [15.]])
y_pred = model(x)
loss = loss_fn(y_pred, y_true)
optimizer.zero_grad()
loss.backward()
optimizer.step()'''
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr = 0.0001)# SGD 就是随机梯度下降
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
# momentum 动量加速,在SGD函数里指定momentum的值即可
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
# RMSprop 指定参数alpha
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
# Adam 参数betas=(0.9, 0.99)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))计算损失
w=w−l_r*dw
b=b-l_r*dbdw和db分别是权重和偏置的梯度,learning_rate是学习率,控制每次更新的步长
'''def hook():# 定义模型参数w = torch.tensor([1.0], requires_grad=True) #requires_grad=True 的作用是让 backward 可以追踪这个参数并且计算它的梯度。b = torch.tensor([0.0], requires_grad=True) ##requires_grad=True 的作用是让 backward 可以追踪这个参数并且计算它的梯度。# 定义输入和目标输出x = torch.tensor([2.0])y_true = torch.tensor([4.0])# 定义损失函数loss_fn = torch.nn.MSELoss()# 定义优化器optimizer = torch.optim.SGD([w, b], lr=0.1)# 迭代训练for i in range(100):# 前向传播y_pred = w * x + bloss = loss_fn(y_pred, y_true)# 反向传播optimizer.zero_grad()loss.backward()# 提取梯度 我们使用loss.backward()计算损失函数对于模型参数的梯度,并将其保存在相应的张量的.grad属性中dw = w.graddb = b.gradprint("dw".format(dw))print("db".format(db))# 更新模型参数optimizer.step()# 输出模型参数print("w = ", w)print("b = ", b)
记录一些api:
表3-1: 常见新建tensor的方法
| 函数 | 功能 |
|---|---|
| Tensor(*sizes) | 基础构造函数 |
| tensor(data,) | 类似np.array的构造函数 |
| ones(*sizes) | 全1Tensor |
| zeros(*sizes) | 全0Tensor |
| eye(*sizes) | 对角线为1,其他为0 |
| arange(s,e,step | 从s到e,步长为step |
| linspace(s,e,steps) | 从s到e,均匀切分成steps份 |
| rand/randn(*sizes) | 均匀/标准分布 |
| normal(mean,std)/uniform(from,to) | 正态分布/均匀分布 |
| randperm(m) | 随机排列 |
相关文章:
pytorch简单新型模型测试参数
import torch from torch.nn import Conv2d,MaxPool2d,Sequential,Flatten,Linear import torchvision import torch.optim.optimizer from torch.utils.data import DataLoader,dataset from torch import nn import torch.optim.optimizer# 建模 model nn.Linear(2,1)#损失 …...
Unity中URP下实现水体(水面高光)
文章目录 前言一、实现高光反射原理1、原理:2、公式: 二、实现1、定义 _SpecularColor 作为高光反射的颜色2、定义 _SpecularIntensity 作为反射系数,控制高光反射的强度3、定义 _Smoothness 作为高光指数,用于模型高光范围4、模拟…...
26.HarmonyOS App(JAVA)列表对话框
列表对话框的单选模式: //单选模式 // listDialog.setSingleSelectItems(new String[]{"第1个选项","第2个选项"},1);//单选 // listDialog.setOnSingleSelectListener(new IDialog.ClickedListener() { // Override …...
五种主流数据库:常用字符函数
SQL 字符函数用于字符数据的处理,例如字符串的拼接、大小写转换、子串的查找和替换等。 本文比较五种主流数据库常用数值函数的实现和差异,包括 MySQL、Oracle、SQL Server、PostgreSQL 以及 SQLite。 字符函数函数功能MySQLOracleSQL ServerPostgreSQ…...
软考笔记--企业资源规划和实施
企业资源是指企业业务活动和战略运营的事物,包括人、财和物,也包括信息资源,同时也包括企业的内部和外部资源。企业资源可以归纳为物流,资金流和信息流。企业资源规划(ERP)是只建立在信息技术基础上&#x…...
React歌词滚动效果(跟随音乐播放时间滚动)
首先给audio绑定更新时间事件 const updateTime e > {console.log(e.target.currentTime)setCurrentTime(e.target.currentTime);};<audiosrc{currentSong.url}ref{audio}onCanPlay{ready}onEnded{end}onTimeUpdate{updateTime}></audio>当歌曲播放时间改变的时…...
java面试题之mybatis篇
什么是ORM? ORM(Object/Relational Mapping)即对象关系映射,是一种数据持久化技术。它在对象模型和关系型数据库直接建立起对应关系,并且提供一种机制,通过JavaBean对象去操作数据库表的数据。 MyBatis通过…...
Java的编程之旅19——使用idea对面相对象编程项目的创建
在介绍面向对象编程之前先说一下我们在idea中如何创建项目文件 使用快捷键CtrlshiftaltS新建一个模块,点击“”,再点New Module 点击Next 我这里给Module起名叫OOP,就是面向对象编程的英文缩写,再点击下面的Finish 点Apply或OK均可 右键src…...
docker build基本命令
背景 我们经常会构建属于我们应用自己的镜像,这种情况下编写dockerfile文件不可避免,本文就来看一下常用的dockerfile的指令 常用的dockerfile的指令 首先我们看一下docker build的执行过程 ENV指令: env指令用于设置shell的环境变量&am…...
nginx高级配置详解
目录 一、网页的状态页 1、状态页的基本配置 2、搭配验证模块使用 3、结合白名单使用 二、nginx 第三方模块 1、echo模块 1.1 编译安装echo模块 1.2 配置echo模块 三、nginx变量 1、内置变量 2、自定义变量 四、自定义图标 五、自定义访问日志 1、自定义日志格式…...
小程序--分包加载
分包加载是优化小程序加载速度的一种手段。 一、为什么进行分包 小程序限制单个包体积不超过2M; 分包可以优化小程序页面的加载速度。 二、启用/使用分包语法subPackages subPackages:下载app.json文件中 root:分包所在的目录 pages&#x…...
R语言【base】——writeLines()
Package base version 4.2.0 Description 向连接写入文本行。 Usage writeLines(text, con stdout(), sep "\n", useBytes FALSE) Arguments 参数【text】:一个字符向量。 参数【con】:一个 connection 对象 或 一个字符串。 参数【se…...
微信小程序-人脸检测
微信小程序的人脸检测功能,配合蓝牙,配合ESP32 可以实现一些有趣的玩具 本文先只说微信小程序的人脸检测功能 1、人脸检测使用了摄像头,就必须在用户隐私权限里面声明。 修改用户隐私声明后,还需要等待审核,大概一天 …...
微信小程序自制动态导航栏
写在前面 关于微信小程序导航栏的问题以及解决办法我已经在先前的文章中有提到,点击下面的链接即可跳转~ 🤏微信小程序自定义的导航栏🤏 在这篇文章中我们需要做一个这样的导航栏!先上效果图 👇👇…...
金融知识分享系列之:五日线
金融知识分享系列之:五日线 一、股票均线二、五日线三、五日线加量能三、五日线案例四、五日线案例五、五日线案例六、五日线案例七、五日线案例八、五日线案例 一、股票均线 股票均线是一种用于平滑股票价格的指标。它是根据一段时间内的股票价格计算得出的平均值…...
回归测试详解
🍅 视频学习:文末有免费的配套视频可观看 🍅 关注公众号:互联网杂货铺,回复1 ,免费获取软件测试全套资料,资料在手,涨薪更快 什么是回归测试 回归测试(Regression testi…...
渲染效果图有哪几种分类?效果图为什么用云渲染更快
云渲染利用了集群化的云端服务器资源,通过并行计算充分发挥了高性能硬件的优势,显著提升了渲染的速度。这一技术特别适用于处理规模庞大或细节丰富的渲染任务,在缩短项目完成时间方面表现卓越。无论是用于为建筑提供精确的可视化效果图&#…...
Docker镜像加速
前言 众所周知,我们常用的一些工具或系统的下载源都是国外的,这就会导致我们在下载一些东西时,会导致下载巨慢或者下载失败的情况,下面便是docker换下载源的教程 镜像加速 下面是几个常用的国内的镜像 科大镜像:ht…...
吴恩达deeplearning.ai:sigmoid函数的替代方案以及激活函数的选择
以下内容有任何不理解可以翻看我之前的博客哦:吴恩达deeplearning.ai专栏 文章目录 引入——改进下需求预测模型ReLU函数(整流线性单元 rectified linear unit)线性激活函数(linear activation function)激活函数的选择实现方式为什么需要激活函数 到现在…...
Alias许可分析中的数据可视化
Alias许可分析中的数据可视化:引领企业洞察合规之道的明灯 在信息化时代,数据可视化已成为各行各业的重要工具,能够帮助用户直观地理解和分析复杂的数据。在Alias许可分析中,数据可视化同样发挥着至关重要的作用,为企…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
