当前位置: 首页 > news >正文

半监督节点分类-graph learning


半监督节点分类相当于在一个图当中,用一部分节点的类别上已知的,有另外一部分节点的类别是未知的,目标是使用有标签的节点来推断没有标签的节点

注意 半监督节点分类属于直推式学习,直推式学习相当于出现新节点后,需要重新进行训练
但是图神经网络属于归纳式学习,当图当中出现一个新节点的时候,可以快速进行泛化

半监督节点分类问题的解决方法:节点特征工程;节点表示学习(图嵌入,如随机游走);标签传播(消息传递);图神经网络

massage passing:消息传递机制 相当于使用一个节点的领域的其他节点,来预测该节点

1.标签传播 label propagation (relational classification)


Two explanations for why behaviors of nodes in networks are correlated:
Homophily:具有相同属性的节点,更可能相连并具有相同的类别
Influence:社交关系会影响节点类别
  首先,在初始化当中,需要将已知标签节点的类别设定为0或1.
  然后将所有不知道类别的节点类别设定为0.5。
  然后需要对所有未知节点值进行多轮加权平均/平均的计算。
  然后不断进行计算,直到收敛(convergence)
  Update all nodes in a random until convergence or until max number of Iteration is reached
  缺点:仅使用到了网络的连接信息,没有使用到节点的属性特征;且并不能保证收敛

2.iterative classfication 算法 / ICA算法

既要用到图当中节点的属性特征,又要去用用图当中节点的连接信息
  需要去训练两个分类器
  第一个分类器仅仅使用节点的属性特征 base classifier
  第二个分分类器,输入的是属性特征和连接信息。
使用节点的属性特征和网络的连接特征(即一个包含邻域节点类别信息的向量Z) relational classifier
  
  首先需要使用已经标准的节点 作为训练集 来训练两个分类器
  然后相当于使用第一个分类器来提供初始的节点标签
  然后再使用第二个分类器进行不断的循环迭代。不断更新Y和Z

3. Correct and Smooth
  是一种后处理的方法
  具体步骤:
  首先需要理由已经标注的节点来训练一个 base predictor
  第二步:然后use this base predictor to predict soft labels of all nodes 
    (注意这里第二步预测的是软标签,即例如class 0的概率是一个值,class 1的概率是一个值,这两个值的加和为1,且包括已经有类别标签的节点也许需要预测,得到所有节点的soft label)
    We expect these soft label to be decently accurate.
    we can use graph structure to post-process the predictions to make them more current.
    相当于想让模型对于这些不太确信的节点更加确信。
  第三步:post-process the predictions using graph structure to obtain the final prediction of all nodes
    Correct and smooth use the 2-step procedure to post-process the soft predictions
    分为correct step 和 smooth step

    Correct step 当中相当于认为error在图当中也有homophily,因此应该分散不确定性和困惑度,仅仅计算有标注的
     下一时刻的error矩阵既要和上一时刻的error矩阵相关,又需要和传播扩散相关
    相当于将不确定性和困惑度进行了扩散

  需要注意的是,在correct 和 smooth 当中,前者使用的是误差矩阵进行传播,但是后者
  使用节点分类预测的置信度进行传播

4.Loopy Belief propagation
  Belief propagation is a dynamic programming approach to answering probability
Queries in a graph
  相当于节点和节点之间是可以传递消息的


 

相关文章:

半监督节点分类-graph learning

半监督节点分类相当于在一个图当中,用一部分节点的类别上已知的,有另外一部分节点的类别是未知的,目标是使用有标签的节点来推断没有标签的节点 注意 半监督节点分类属于直推式学习,直推式学习相当于出现新节点后,需要…...

软件文档-运维-开发-管理-资质-评审-招投标-验收

开发文档:这类文档主要用于记录软件的开发过程和细节,包括: 《功能要求》:描述了软件应具备的功能,是软件开发的基础。《投标方案》:向潜在的客户或招标方展示公司的技术和项目实施能力。《需求分析》&…...

猫头虎分享已解决Bug || Vue中的TypeError: Cannot read property ‘name‘ of undefined 错误

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...

技术应用:使用Spring Boot、MyBatis Plus和Dynamic DataSource实现多数据源

引言 在现代的软件开发中,许多应用程序需要同时访问多个数据库。例如,一个电子商务平台可能需要访问多个数据库来存储用户信息、产品信息和订单信息等。在这种情况下,使用多数据源是一种常见的解决方案,它允许我们在一个应用程序…...

C# Onnx 使用onnxruntime部署实时视频帧插值

目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址:https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…...

编程笔记 Golang基础 016 数据类型:数字类型

编程笔记 Golang基础 016 数据类型:数字类型 1. 整数类型(Integer Types)a) 固定长度整数:b) 变长整数: 2. 浮点数类型(Floating-Point Types)3. 复数类型(Complex Number Types&…...

一周学会Django5 Python Web开发-会话管理(CookiesSession)

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计26条视频,包括:2024版 Django5 Python we…...

QT之QString.arg输出固定位数

问题描述 我需要用QString输出一个固定位数的数字字符串。起初我的代码是这样&#xff1a; int img_num 1 auto new_name QString("%1.png").arg((int)img_num, 3, 10, 0); //最后一个参数用u0也是一样的 qDebug() << "new_name:" << new…...

Linux下各种压缩包的压缩与解压

tar 归档&#xff0c;不压缩&#xff0c;常见后缀 .tar # 将文件夹归档成为一个包 tar cf rootfs.tar rootfs # 将归档包还原为文件夹 tar xf rootfs.tar # 将归档包还原到路径 a/b/c tar xf rootfs.tar -C a/b/cgzip压缩&#xff0c; 常见后缀 .tar.gz .tgz # 压缩 tar czf …...

【ctfshow—web】——信息搜集篇1(web1~20详解)

ctfshow—web题解 web1web2web3web4web5web6web7web8web9web10web11web12web13web14web15web16web17web18web19web20 web1 题目提示 开发注释未及时删除 那就找开发注释咯&#xff0c;可以用F12来查看&#xff0c;也可以CtrlU直接查看源代码呢 就拿到flag了 web2 题目提示 j…...

GEE入门篇|遥感专业术语(实践操作4):光谱分辨率(Spectral Resolution)

目录 光谱分辨率&#xff08;Spectral Resolution&#xff09; 1.MODIS 2.EO-1 光谱分辨率&#xff08;Spectral Resolution&#xff09; 光谱分辨率是指传感器进行测量的光谱带的数量和宽度。 您可以将光谱带的宽度视为每个波段的波长间隔&#xff0c;在多个波段测量辐射亮…...

c++中模板的注意事项

1. 模板定义时&#xff0c;<>中的虚拟类型参数不能为空。(因为我们使用模板就是希望使用模拟类型代替其它的类型&#xff0c;如果我们不定义就没有意义了) 2. 无论是定义函数模板还是类模板&#xff0c;其实template定义与后面使用虚拟类型的类或者函数&#xff0c;是…...

【代码随想录python笔记整理】第十三课 · 链表的基础操作 1

前言:本笔记仅仅只是对内容的整理和自行消化,并不是完整内容,如有侵权,联系立删。 一、链表 在之前的学习中,我们接触到了字符串和数组(列表)这两种结构,它们具有着以下的共同点:1、元素按照一定的顺序来排列。2、可以通过索引来访问数组中的元素和字符串中的字符。由此,…...

JAVA工程师面试专题-《Mysql》篇

目录 一、基础 1、mysql可以使用多少列创建索引&#xff1f; 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎&#xff0c;两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别&#xff1f; 7、IN与EXISTS的区别 二、索引 1、索引及索…...

@ 代码随想录算法训练营第4周(C语言)|Day22(二叉树)

代码随想录算法训练营第4周&#xff08;C语言&#xff09;|Day22&#xff08;二叉树&#xff09; Day22、二叉树&#xff08;包含题目 ● 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点 &#xff09; 235. 二叉搜索树的最近公…...

福特锐界2021plus 汽车保养手册

福特锐界2021plus汽车保养手册两页&#xff0c;零部件保养要求&#xff0c;电子版放这里方便查询&#xff1a;...

c++进阶路线

学完C后的进阶路线-初学者勿入【程序员Rock】_哔哩哔哩_bilibili 1.系统训练代码阅读能力 代码阅读工具&#xff1a; 1&#xff09;.Source Insight(阅读大型源码) 2&#xff09;.understand(整体代码模块关系构建) 3&#xff09;.SOURCETRAIL 代码阅读能力--千行级 嵌入…...

python中的类与对象(2)

目录 一. 类的基本语法 二. 类属性的应用场景 三. 类与类之间的依赖关系 &#xff08;1&#xff09;依赖关系 &#xff08;2&#xff09;关联关系 &#xff08;3&#xff09;组合关系 四. 类的继承 一. 类的基本语法 先看一段最简单的代码&#xff1a; class Dog():d_…...

Android横竖屏切换configChanges=“screenSize|orientation“避免activity销毁重建,Kotlin

Android横竖屏切换configChanges"screenSize|orientation"避免activity销毁重建&#xff0c;Kotlin 如果不在Androidmanifest.xml设置activity的&#xff1a; android:configChanges"screenSize|orientation" 那么&#xff0c;每次横竖屏切换activity都会…...

【C语言基础】:操作符详解(二)

文章目录 操作符详解一、上期扩展二、单目操作符三、逗号表达式四、下标访问[]、 函数调用()五、结构成员访问操作符六、操作符的属性&#xff1a;优先级、结合性1. 优先级2. 结合性 操作符详解 上期回顾&#xff1a;【C语言基础】&#xff1a;操作符详解(一) 一、上期扩展 …...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...