当前位置: 首页 > news >正文

半监督节点分类-graph learning


半监督节点分类相当于在一个图当中,用一部分节点的类别上已知的,有另外一部分节点的类别是未知的,目标是使用有标签的节点来推断没有标签的节点

注意 半监督节点分类属于直推式学习,直推式学习相当于出现新节点后,需要重新进行训练
但是图神经网络属于归纳式学习,当图当中出现一个新节点的时候,可以快速进行泛化

半监督节点分类问题的解决方法:节点特征工程;节点表示学习(图嵌入,如随机游走);标签传播(消息传递);图神经网络

massage passing:消息传递机制 相当于使用一个节点的领域的其他节点,来预测该节点

1.标签传播 label propagation (relational classification)


Two explanations for why behaviors of nodes in networks are correlated:
Homophily:具有相同属性的节点,更可能相连并具有相同的类别
Influence:社交关系会影响节点类别
  首先,在初始化当中,需要将已知标签节点的类别设定为0或1.
  然后将所有不知道类别的节点类别设定为0.5。
  然后需要对所有未知节点值进行多轮加权平均/平均的计算。
  然后不断进行计算,直到收敛(convergence)
  Update all nodes in a random until convergence or until max number of Iteration is reached
  缺点:仅使用到了网络的连接信息,没有使用到节点的属性特征;且并不能保证收敛

2.iterative classfication 算法 / ICA算法

既要用到图当中节点的属性特征,又要去用用图当中节点的连接信息
  需要去训练两个分类器
  第一个分类器仅仅使用节点的属性特征 base classifier
  第二个分分类器,输入的是属性特征和连接信息。
使用节点的属性特征和网络的连接特征(即一个包含邻域节点类别信息的向量Z) relational classifier
  
  首先需要使用已经标准的节点 作为训练集 来训练两个分类器
  然后相当于使用第一个分类器来提供初始的节点标签
  然后再使用第二个分类器进行不断的循环迭代。不断更新Y和Z

3. Correct and Smooth
  是一种后处理的方法
  具体步骤:
  首先需要理由已经标注的节点来训练一个 base predictor
  第二步:然后use this base predictor to predict soft labels of all nodes 
    (注意这里第二步预测的是软标签,即例如class 0的概率是一个值,class 1的概率是一个值,这两个值的加和为1,且包括已经有类别标签的节点也许需要预测,得到所有节点的soft label)
    We expect these soft label to be decently accurate.
    we can use graph structure to post-process the predictions to make them more current.
    相当于想让模型对于这些不太确信的节点更加确信。
  第三步:post-process the predictions using graph structure to obtain the final prediction of all nodes
    Correct and smooth use the 2-step procedure to post-process the soft predictions
    分为correct step 和 smooth step

    Correct step 当中相当于认为error在图当中也有homophily,因此应该分散不确定性和困惑度,仅仅计算有标注的
     下一时刻的error矩阵既要和上一时刻的error矩阵相关,又需要和传播扩散相关
    相当于将不确定性和困惑度进行了扩散

  需要注意的是,在correct 和 smooth 当中,前者使用的是误差矩阵进行传播,但是后者
  使用节点分类预测的置信度进行传播

4.Loopy Belief propagation
  Belief propagation is a dynamic programming approach to answering probability
Queries in a graph
  相当于节点和节点之间是可以传递消息的


 

相关文章:

半监督节点分类-graph learning

半监督节点分类相当于在一个图当中,用一部分节点的类别上已知的,有另外一部分节点的类别是未知的,目标是使用有标签的节点来推断没有标签的节点 注意 半监督节点分类属于直推式学习,直推式学习相当于出现新节点后,需要…...

软件文档-运维-开发-管理-资质-评审-招投标-验收

开发文档:这类文档主要用于记录软件的开发过程和细节,包括: 《功能要求》:描述了软件应具备的功能,是软件开发的基础。《投标方案》:向潜在的客户或招标方展示公司的技术和项目实施能力。《需求分析》&…...

猫头虎分享已解决Bug || Vue中的TypeError: Cannot read property ‘name‘ of undefined 错误

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...

技术应用:使用Spring Boot、MyBatis Plus和Dynamic DataSource实现多数据源

引言 在现代的软件开发中,许多应用程序需要同时访问多个数据库。例如,一个电子商务平台可能需要访问多个数据库来存储用户信息、产品信息和订单信息等。在这种情况下,使用多数据源是一种常见的解决方案,它允许我们在一个应用程序…...

C# Onnx 使用onnxruntime部署实时视频帧插值

目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址:https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…...

编程笔记 Golang基础 016 数据类型:数字类型

编程笔记 Golang基础 016 数据类型:数字类型 1. 整数类型(Integer Types)a) 固定长度整数:b) 变长整数: 2. 浮点数类型(Floating-Point Types)3. 复数类型(Complex Number Types&…...

一周学会Django5 Python Web开发-会话管理(CookiesSession)

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计26条视频,包括:2024版 Django5 Python we…...

QT之QString.arg输出固定位数

问题描述 我需要用QString输出一个固定位数的数字字符串。起初我的代码是这样&#xff1a; int img_num 1 auto new_name QString("%1.png").arg((int)img_num, 3, 10, 0); //最后一个参数用u0也是一样的 qDebug() << "new_name:" << new…...

Linux下各种压缩包的压缩与解压

tar 归档&#xff0c;不压缩&#xff0c;常见后缀 .tar # 将文件夹归档成为一个包 tar cf rootfs.tar rootfs # 将归档包还原为文件夹 tar xf rootfs.tar # 将归档包还原到路径 a/b/c tar xf rootfs.tar -C a/b/cgzip压缩&#xff0c; 常见后缀 .tar.gz .tgz # 压缩 tar czf …...

【ctfshow—web】——信息搜集篇1(web1~20详解)

ctfshow—web题解 web1web2web3web4web5web6web7web8web9web10web11web12web13web14web15web16web17web18web19web20 web1 题目提示 开发注释未及时删除 那就找开发注释咯&#xff0c;可以用F12来查看&#xff0c;也可以CtrlU直接查看源代码呢 就拿到flag了 web2 题目提示 j…...

GEE入门篇|遥感专业术语(实践操作4):光谱分辨率(Spectral Resolution)

目录 光谱分辨率&#xff08;Spectral Resolution&#xff09; 1.MODIS 2.EO-1 光谱分辨率&#xff08;Spectral Resolution&#xff09; 光谱分辨率是指传感器进行测量的光谱带的数量和宽度。 您可以将光谱带的宽度视为每个波段的波长间隔&#xff0c;在多个波段测量辐射亮…...

c++中模板的注意事项

1. 模板定义时&#xff0c;<>中的虚拟类型参数不能为空。(因为我们使用模板就是希望使用模拟类型代替其它的类型&#xff0c;如果我们不定义就没有意义了) 2. 无论是定义函数模板还是类模板&#xff0c;其实template定义与后面使用虚拟类型的类或者函数&#xff0c;是…...

【代码随想录python笔记整理】第十三课 · 链表的基础操作 1

前言:本笔记仅仅只是对内容的整理和自行消化,并不是完整内容,如有侵权,联系立删。 一、链表 在之前的学习中,我们接触到了字符串和数组(列表)这两种结构,它们具有着以下的共同点:1、元素按照一定的顺序来排列。2、可以通过索引来访问数组中的元素和字符串中的字符。由此,…...

JAVA工程师面试专题-《Mysql》篇

目录 一、基础 1、mysql可以使用多少列创建索引&#xff1f; 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎&#xff0c;两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别&#xff1f; 7、IN与EXISTS的区别 二、索引 1、索引及索…...

@ 代码随想录算法训练营第4周(C语言)|Day22(二叉树)

代码随想录算法训练营第4周&#xff08;C语言&#xff09;|Day22&#xff08;二叉树&#xff09; Day22、二叉树&#xff08;包含题目 ● 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点 &#xff09; 235. 二叉搜索树的最近公…...

福特锐界2021plus 汽车保养手册

福特锐界2021plus汽车保养手册两页&#xff0c;零部件保养要求&#xff0c;电子版放这里方便查询&#xff1a;...

c++进阶路线

学完C后的进阶路线-初学者勿入【程序员Rock】_哔哩哔哩_bilibili 1.系统训练代码阅读能力 代码阅读工具&#xff1a; 1&#xff09;.Source Insight(阅读大型源码) 2&#xff09;.understand(整体代码模块关系构建) 3&#xff09;.SOURCETRAIL 代码阅读能力--千行级 嵌入…...

python中的类与对象(2)

目录 一. 类的基本语法 二. 类属性的应用场景 三. 类与类之间的依赖关系 &#xff08;1&#xff09;依赖关系 &#xff08;2&#xff09;关联关系 &#xff08;3&#xff09;组合关系 四. 类的继承 一. 类的基本语法 先看一段最简单的代码&#xff1a; class Dog():d_…...

Android横竖屏切换configChanges=“screenSize|orientation“避免activity销毁重建,Kotlin

Android横竖屏切换configChanges"screenSize|orientation"避免activity销毁重建&#xff0c;Kotlin 如果不在Androidmanifest.xml设置activity的&#xff1a; android:configChanges"screenSize|orientation" 那么&#xff0c;每次横竖屏切换activity都会…...

【C语言基础】:操作符详解(二)

文章目录 操作符详解一、上期扩展二、单目操作符三、逗号表达式四、下标访问[]、 函数调用()五、结构成员访问操作符六、操作符的属性&#xff1a;优先级、结合性1. 优先级2. 结合性 操作符详解 上期回顾&#xff1a;【C语言基础】&#xff1a;操作符详解(一) 一、上期扩展 …...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...