当前位置: 首页 > news >正文

Yolov8有效涨点:YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细

前言

2023 年,Ultralytics 推出了最新版本的 YOLO 模型。注意力机制是提高模型性能最热门的方法之一。

本次介绍的是YOLOv8-AM,它将注意力机制融入到原始的YOLOv8架构中。具体来说,我们分别采用四个注意力模块:卷积块注意力模块(CBAM)、全局注意力机制(GAM)、高效通道注意力(ECA)和随机注意力(SA)来设计改进模型并在数据集上进行测试。实验结果表明,基于ResBlock + CBAM(ResCBAM)的YOLOv8-AM模型在IoU 50(mAP 50)下的平均精度提到了2.2%,达到了state-of-the-art(SOTA)表现。相反,结合GAM的YOLOv8-AM模型获得了的mAP @50并不是一个令人满意的增强。因此,我们将ResBlock和GAM结合起来,引入ResGAM设计另一个新的YOLOv8-AM模型,获得一个较为满意的结果。

目录

前言

注意力机制:

Convolutional Block Attention Module

Efficient Channel Attention

Shuffle Attention

Global Attention Mechanism

实验结果(供参考)

可论文指导--------->v jiabei-545

改进代码(失效+ v 👆)


注意力机制:
带有YOLOv8-AM的结构图

YOLOv8 架构由四个关键组件组成:Backbone、Neck、Head 和 Loss Function。 Backbone 融合了 Cross Stage Partial (CSP) 概念,具有减少计算负载、同时增强 CNN 学习能力的优势。如图所示,YOLOv8与采用C3模块的YOLOv5不同,采用C2f模块,该模块集成了C3模块和YOLOv7中的扩展ELAN(E-ELAN)概念。

YOLOv8-AM模型架构详解,其中注意力模块为Shuffle Attention(SA)、Efficient Channel Attention(ECA)、Global Attention Mechanism(GAM)、ResBlock + Convolutional Block Attention Module(ResCBAM)

Convolutional Block Attention Module
CBAM架构

CBAM 包括通道注意力(C-Attention)和空间注意力(S-Attention),如图所示。给定一个中间特征图,CBAM 通过等式依次推断出 1D 通道注意力图  和 2D 空间注意力图 。

ResBlock + Convolutional Block Attention Module

原理和resnet一样 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, ResBlock_CBAM, [512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, ResBlock_CBAM, [256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, ResBlock_CBAM, [512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, ResBlock_CBAM, [1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
Efficient Channel Attention
Efficient Channel Attention

ECA 主要包含跨通道交互和具有自适应卷积核的一维卷积,如图 所示。跨通道交互代表了一种组合特征的新方法,增强了特定语义的特征表达。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, ECAAttention, [512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, ECAAttention, [256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, ECAAttention, [512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, ECAAttention, [1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
Shuffle Attention
Shuffle Attention

 SA将输入特征图分为不同的组,利用Shuffle Unit将通道注意力和空间注意力整合到每个组的一个块中,如图所示。随后,子特征被聚合,并且“ ShuffleNetV2 中使用的“Channel Shuffle”算子用于促进各种子特征之间的信息通信。对于通道注意力,SA 采用 GAP 来捕获和嵌入子特征。此外,使用带有 sigmoid 函数的简单门控机制来创建紧凑的函数,以促进精确和自适应的选择。

# SA.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, ShuffleAttention, [512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, ShuffleAttention, [256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, ShuffleAttention, [512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, ShuffleAttention, [1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
Global Attention Mechanism
Global Attention Mechanism

 GAM采用了CBAM提出的由通道注意力和空间注意力组成的主要架构,并重新设计了子模块,如图所示。此外,我在GAM内的各层之间添加了快捷连接,这使得输入能够更快地向前传播。

# GAM.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, GAM_Attention, [256,256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, GAM_Attention, [1024,1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
ResBlock + Global Attention Mechanism

 原理和resnet一样

实验结果(供参考)

ResBlock + Convolutional Block Attention Module
Shuffle Attention

Efficient Channel Attention
Global Attention Mechanism

ResBlock + Global Attention Mechanism
定量比较(Precision/Recall/F1/mAP)

可论文指导--------->v jiabei-545
改进代码(失效+ v 👆)

链接: https://pan.baidu.com/s/1Fi7ghwJ6XiXrDDnoCvlvrQ?pwd=zk88 提取码: zk88 

欢迎大家在评论区进行讨论

相关文章:

Yolov8有效涨点:YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细

前言 2023 年,Ultralytics 推出了最新版本的 YOLO 模型。注意力机制是提高模型性能最热门的方法之一。 本次介绍的是YOLOv8-AM,它将注意力机制融入到原始的YOLOv8架构中。具体来说,我们分别采用四个注意力模块:卷积块注意力模块…...

苹果分拣检测YOLOV8NANO

苹果分拣,可以检测成熟、切片、损坏、不成熟四种类型,YOLOV8NANO,训练得到PT模型,然后转换成ONNX,OPENCV的DNN调用,支持C,PYTHON 苹果分拣检测YOLOV8NANO,检测四种类型苹果...

使用 Verilog 做一个可编程数字延迟定时器 LS7211-7212

今天的项目是在 Verilog HDL 中实现可编程数字延迟定时器。完整呈现了延迟定时器的 Verilog 代码。 所实现的数字延迟定时器是 CMOS IC LS7212,用于生成可编程延迟。延迟定时器的规格可以在这里轻松找到。基本上,延迟定时器有 4 种操作模式:…...

戏说c语言文章汇总

c语言的起源GNU C和标准C第一篇: hello c!第二篇: 为什么需要编译第三篇: 当你运行./a.out时,发生了什么?第四篇: 简单的加法器第五篇: 两个正数相加竟然变成了负数!第六篇: 西西弗斯推石头(循环)第七篇: 九九乘法表(双循环)第八篇: 如果上天…...

面试redis篇-12Redis集群方案-分片集群

原理 主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决: 海量数据存储问题高并发写的问题 使用分片集群可以解决上述问题,分片集群特征: 集群中有多个master,每个master保存不同数据每个master都可以有…...

【Java EE初阶二十三】servlet的简单理解

1. 初识servlet Servlet 是一个比较古老的编写网站的方式,早起Java 编写网站,主要使用 Servlet 的方式,后来 Java 中产生了一个Spring(一套框架),Spring 又是针对 Servlet 进行了进一步封装,从而让我们编写网站变的更简单了;Sprin…...

c++ http操作接口

很简单的使用libcurl来操作http与服务器来通讯,包含http与https,对外只开放 #include "request.h" #include "response.h" #include "url.h" 三个头文件,简单易用,使用的实例如下: vo…...

oracle官网下载早期jdk版本

Java Downloads | Oracle JDK Builds from Oracle 以上压缩版,以下安装版 Java Downloads | Oracle 该链接往下拉能看到jdk8和jdk11的安装版 -- end...

Python爬虫实战:图片爬取与保存

引言: 在本文中,我们将学习如何使用Python创建一个简单的图片爬虫。 我们将利用requests库来发送HTTP请求,BeautifulSoup库来解析HTML页面,以及os和shutil库来下载和保存图片。通过这个教程,你将学会如何爬取网…...

CMS垃圾回收器

CMS垃圾回收 CMS GC的官方名称为“Mostly Concurrenct Mark and Sweep Garbage Collector”(最大-并发-标记-清除-垃圾收集器)。 作用范围: 老年代 算法: 并发标记清除算法。 启用参数:-XX:UseConMarkSweepGC 默认回收…...

【力扣白嫖日记】184.部门工资最高的员工

前言 练习sql语句,所有题目来自于力扣(https://leetcode.cn/problemset/database/)的免费数据库练习题。 今日题目: 184.部门工资最高的员工 表:Employee 列名类型idintnamevarcharsalaryvarchardepartmentIdint …...

JAVA讲解算法-排序算法-选择排序算法-02

一、定义 选择排序法是一种不稳定的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素&a…...

【初始RabbitMQ】高级发布确认的实现

在生产环境中由于一些不明原因,导致 rabbitmq 重启,在 RabbitMQ 重启期间生产者消息投递失败, 导致消息丢失,需要手动处理和恢复。于是,我们开始思考,如何才能进行 RabbitMQ 的消息可靠投递呢? …...

用39块钱的全志V851se视觉开发板做了个小相机,还可以物品识别、自动追焦!

用39块钱的V851se视觉开发板做了个小相机。 可以进行物品识别、自动追焦! 这个超低成本的小相机是在V851se上移植使用全志在线开源版本的Tina Linux与OpenCV框架开启摄像头拍照捕获视频,并结合NPU实现Mobilenet v2目标分类识别以及运动追踪等功能…并最终…...

主从复制实现Redis集群

主从复制实现Redis集群实验 (一主二从): 实验环境: 使用Docker 搭建 Redis 版本 5.0.5 打开一个终端窗口,在其中运行如下命令创建一个名为redis-master的Redis容器。注意,它的端口是6379 (本地的端口:映射到容器的端口) docker run -itd--name redis-m…...

高分文献解读|3D打印骨支架实现梯度密度颌骨功能性重建

近月,浙江大学医学院附属口腔医院谢志坚教授团队与浙江大学化学系唐睿康教授团队、机械工程学院贺永教授团队合作,在期刊《Advanced Functional Materials》(IF19)上发表题为“A Hierarchical 3D Graft Printed with Nanoink for …...

大型电商日志离线分析系统(一)

一、项目需求分析 某大型网站日志离线分析系统 1.1 概述 该部分的主要目标就是描述本次项目最终七个分析模块的页面展示。 1.2 工作流 在我们的demo展示中,我们使用jqueryecharts的方式调用程序后台提供的rest api接口,获取json数据,然后…...

FL Studio Fruity Edition2024中文入门版Win/Mac

FL Studio Fruity Edition2024是一款功能强大的音乐制作软件,适合初学者和音乐爱好者使用。它提供了丰富的音乐制作工具,包括音频录制、编辑、混音以及MIDI制作等功能,帮助用户轻松创作出动人的音乐作品。 FL Studio 21.2.3 Win-安装包下载如…...

学习vue3第二节(使用vite 创建vue3项目)

使用vite 创建vue3项目 node 安装请移步 node官网: https://nodejs.p2hp.com/ node 版本控制 请移步 nvm官网:https://nvm.uihtm.com/ vite 生成vue项目完整版 请移步 vite官网:https://cn.vitejs.dev/ 1、使用 npm 或者 yarn 创建vue3 项目…...

基于Siamese网络的zero-shot意图分类

原文地址:Zero-Shot Intent Classification with Siamese Networks 通过零样本意图分类有效定位域外意图 2021 年 9 月 24 日 意图识别是面向目标对话系统的一项重要任务。意图识别(有时也称为意图检测)是使用标签对每个用户话语进行分类的任务,该标签…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

在rocky linux 9.5上在线安装 docker

前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

基础测试工具使用经验

背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...