[FT]chatglm2微调
1.准备工作
- 显卡一张:A卡,H卡都可以,微调需要一张,大概显存得30~40G吧
- 环境安装:
- 尽量在虚拟环境安装:参见,https://blog.csdn.net/u010212101/article/details/103351853
- 环境安装参见:https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning
2.如何微调:
参见:https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning
2.0.训练数据格式,整理成如下格式,格式1和2都行:
格式1:
{"content":"xxx","summary":"xxx"}
{"content":"xxx","summary":"xxx"}
... ...
格式2:
[
{"content":"xxx","summary":"xxx"}
{"content":"xxx","summary":"xxx"}
... ...]
2.1.训练方案-ptuning高效微调:
参见:https://github.com/THUDM/ChatGLM2-6B/blob/main/ptuning/train.sh
PRE_SEQ_LEN=128
LR=2e-2
NUM_GPUS=1torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \--do_train \--train_file AdvertiseGen/train.json \--validation_file AdvertiseGen/dev.json \--preprocessing_num_workers 10 \--prompt_column content \--response_column summary \--overwrite_cache \--model_name_or_path THUDM/chatglm2-6b \--output_dir output/adgen-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \--overwrite_output_dir \--max_source_length 64 \--max_target_length 128 \--per_device_train_batch_size 1 \--per_device_eval_batch_size 1 \--gradient_accumulation_steps 16 \--predict_with_generate \--max_steps 3000 \--logging_steps 10 \--save_steps 1000 \--learning_rate $LR \--pre_seq_len $PRE_SEQ_LEN \--quantization_bit 4
注意点:
- 将模型下载到本地,可以从modelscope或者huggingface上下载,建议直接modelscope下载,huggingface下载慢/还得科学上网,麻烦。
- https://modelscope.cn/models/ZhipuAI/chatglm2-6b-32k/summary
- 将上述model_name_or_path 的路径改为你本地模型路径
- 资源紧张,下述一些参数需要调整:
- 调节batchsize设置: per_device_train_batch_sizeper_device_eval_batch_sizegradient_accumulation_steps=batchsize,这三项酌情调整
- 训练步数:
- max_steps=5000步
- max_source_length:输入的最大长度
- max_target_length:输出的最大长度
2.2.全量微调
- 全量微调速度比较慢,建议使用deepspeed,直接pip安装即可
- 全量微调,几百上千条数据的情况,显存得100G以上,也即需要至少2张A800卡
deepspeed 全量微调chatglm2命令如下:
- 参见:https://github.com/THUDM/ChatGLM2-6B/blob/main/ptuning/ds_train_finetune.sh
LR=1e-4MASTER_PORT=$(shuf -n 1 -i 10000-65535)deepspeed --num_gpus=4 --master_port $MASTER_PORT main.py \--deepspeed deepspeed.json \--do_train \--train_file AdvertiseGen/train.json \--test_file AdvertiseGen/dev.json \--prompt_column content \--response_column summary \--overwrite_cache \--model_name_or_path THUDM/chatglm2-6b \--output_dir ./output/adgen-chatglm2-6b-ft-$LR \--overwrite_output_dir \--max_source_length 64 \--max_target_length 64 \--per_device_train_batch_size 4 \--per_device_eval_batch_size 1 \--gradient_accumulation_steps 1 \--predict_with_generate \--max_steps 5000 \--logging_steps 10 \--save_steps 1000 \--learning_rate $LR \--fp16
- 注意点和上述基本一致,至于deepspeed高级配置如何做,这里挖个坑,后续佛系更新
2.3.其他微调,参见官方教程
https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning
3.推理加速
- 按照fastllm,速度提升3成~4成吧
- 教程参见:https://github.com/ztxz16/fastllm
相关文章:
[FT]chatglm2微调
1.准备工作 显卡一张:A卡,H卡都可以,微调需要一张,大概显存得30~40G吧环境安装: 尽量在虚拟环境安装:参见,https://blog.csdn.net/u010212101/article/details/103351853环境安装参见ÿ…...

AI赋能Oracle DBA:以自然语言与Oracle数据库互动
DBA AI助手:以自然语言与Oracle数据库互动 0. 引言1. AI赋能Oracle DBA的优势2. AI如何与Oracle数据库交互3. 自然语言查询的一些示例4. 未来展望 0. 引言 传统的Oracle数据库管理 (DBA) 依赖于人工操作,包括编写复杂的SQL语句、分析性能指标和解决各种…...

Django学习记录04——靓号管理整合
1.靓号表 1.1 表结构 1.2 靓号表的构造 class PrettyNum(models.Model): 靓号表 mobile models.CharField(verbose_name"手机号", max_length11)# default 默认值# null true,blank true 允许为空price models.IntegerField(verbose_name"价…...

AD9226 65M采样 模数转换
目录 AD9220_ReadTEST AD9220_ReadModule AD9226_TEST_tb 自己再写个 260M的时钟,四分频来提供65M的时钟。 用 vivado 写的 AD9226_ReadTEST module AD9226_ReadTEST( input clk, input rstn,output clk_driver, //模块时钟管脚 input [12:0]IO_data, //模块数…...
远程控制桌面,让电脑办公更简单
随着科技的不断发展,远程办公已经成为了越来得越多企业和个人的选择。远程控制电脑办公,仅需1款软件即可轻松get! 1.绿虫电脑管理软件 是一款功能强大的办公电脑管理软件,仅需安装在被控端电脑,主控端通过网页登录后…...

猫头虎分享已解决Bug || 网络连接问题:NetworkError: Failed to fetch
博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...

Layer1 明星项目 Partisia Blockchain 何以打造互操作、可创新的数字经济网络
我们的目标是创建一个以用户为中心的全新数字经济网络:在去信任化和公平透明的环境下,所有的隐私数据都能够得到天然保障,企业、用户等各角色的协作与共享将会更顺利地进行。 —— Partisia Blockchain 团队 作为一个以 Web3 安全为技术方向的…...
用CSS制作弧形卡片的三种创意方法!
在平时开发中,有时候会碰到下面这种“弧形”样式,主要分为“内凹”和“外凸”两种类型,如下 该如何实现呢?或者想一下,有哪些 CSS 属性和“弧形”有关?下面介绍 3 种方式,一起看看吧 一、borde…...
守护健康之光 —— 小脑萎缩患者的生活指南
生活中,我们或许会遇到一些特殊的挑战,而面对这些挑战时,了解和掌握正确的应对策略至关重要。今天,我们要聊一聊一个较为少见却不容忽视的话题——小脑萎缩。这不仅是患者的战役,也是家人和社会共同的关怀课题。下面&a…...
CSS选择器:让样式精确命中目标
CSS选择器:让样式精确命中目标 在网页开发中,CSS选择器是一种强大的工具,它可以帮助我们精确地定位HTML元素,以便为它们应用样式。在这篇博客中,我们将探讨一些常见的CSS选择器,了解它们的功能和使用方法。…...
前端不传被删记录的id怎么删除记录,或子表如何删除记录
1.删除主表相关子表所有记录 2.再保存一次前端传来的记录 3.如果子表是通过先生成空记录,再put修改模式,可以在执行1和2两步后再拿模板集合和当前现有子表集合套两个for循环对比判断,count记录模板记录和子表记录每次循环重合次数ÿ…...
axios的基本特性用法
1. axios的基本特性 axios 是一个基于Promise用于浏览器和node.js的HTTP客户端。 它具有以下特征: 支持浏览器和node.js支持promiseAPI自动转换JSON数据能拦截请求和响应请求转换请求数据和响应数据(请求是可以加密,在返回时也可进行解密&…...

打印水仙花数---c语言刷题
欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 题述 求出0~100000之间的所有“水仙花数”并输出。 “水仙花数”是指一个n位数,其各位数字的n次方之和确好等于该数本身,如:153&#…...

springboot基础(82):分布式定时任务解决方案shedlock
文章目录 前言简介shedlock dbSchedulerLock注解说明 shedlock redis遇到的问题1.配置shedlock不生效2.报错net/javacrumbs/shedlock/core/LockProvider shedlock升级高版本同名定时任务 前言 多节点或者多服务器拥有相同的定时任务,这种情况下,不同节…...
【Golang】Gorm乐观锁optimisticlock的使用
在数据库操作中,为了保证数据的一致性和完整性,常常需要采取一些措施来防止并发操作导致的数据冲突。悲观锁和乐观锁是两种常见的并发控制机制。 悲观锁(Pessimistic Lock) 悲观锁的基本假设是,数据在并发访问时很可能…...

Apache Doris 发展历程、技术特性及云原生时代的未来规划
本文节选自《基础软件之路:企业级实践及开源之路》一书,该书集结了中国几乎所有主流基础软件企业的实践案例,由 28 位知名专家共同编写,系统剖析了基础软件发展趋势、四大基础软件(数据库、操作系统、编程语言与中间件…...

2024-02-26(Spark,kafka)
1.Spark SQL是Spark的一个模块,用于处理海量结构化数据 限定:结构化数据处理 RDD的数据开发中,结构化,非结构化,半结构化数据都能处理。 2.为什么要学习SparkSQL SparkSQL是非常成熟的海量结构化数据处理框架。 学…...

RubyMine 2023:让Ruby编程变得更简单 mac/win版
JetBrains RubyMine 2023是一款专为Ruby开发者打造的强大集成开发环境(IDE)。这款工具集成了许多先进的功能,旨在提高Ruby编程的效率和生产力。 RubyMine 2023软件获取 RubyMine 2023的智能代码编辑器提供了丰富的代码补全和提示功能&#…...

低功耗设计——门控时钟
1. 前言 芯片功耗组成中,有高达40%甚至更多是由时钟树消耗掉的。这个结果的原因也很直观,因为这些时钟树在系统中具有最高的切换频率,而且有很多时钟buffer,而且为了最小化时钟延时,它们通常具有很高的驱动强度。此外&…...
《凤凰架构》-本地事务章节 读书笔记
1、写锁又名排它锁,写锁禁止其他事务施加读锁和写锁,而不禁止其他事务读取数据(如果遇到了个不加任何锁的另一个事务2,写锁是无法阻止事务2读取数据的),这就是读未提交隔离级别中的脏读问题产生的根因。 2…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...