R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用
回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了现代回归分析主流发展方向。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为可信。本课程将分为复杂数据的回归及混合效应模型概述及数据探索;回归与混合效应模型,包括一般线性回归(lm)、广义线性回归(glm);线性混合效应模型(lmm)及广义线性混合效应模型(glmm);贝叶斯(brms)回归与混合效应模型;相关数据回归与混合效应模型及贝叶斯实现,包括嵌套数据、时间自相关数据,空间自相数据及系统发育数据分析;非线性数据回归分析及贝叶斯实现,包括广义可加(混合)模型和非线性(混合)模型等。
张博士:来自中国科学院及重点高校资深专家,长期从事R语言模型、群落生态学、保护生物学、景观生态学和生态模型方面的研究和教学工作,以发表了多篇论文,拥有丰富的科研及实践经验。
复杂数据的回归及混合效应模型概述及数据探索
1复杂数据回归模型的选择策略
1)科学研究中数据及其复杂性
2)回归分析历史、理论基础
3)回归分析基本假设和常见问题
4)复杂数据回归模型选择策略

2如何通过数据探索避免常见统计问题
- 数据缺失(missing value)
- 零值(zero trouble)
- 奇异值/离群值(outliers)
- 异质性(heterogeneity)
- 数据分布正态性(normality)
- 响应变量与预测变量间关系(relationships)
- 交互作用项(interaction)
- 共线性(collinearity)
- 样本独立性(independence)

专题一:回归与混合效应(多水平/层次/嵌套)模型
1.1一般线性模型(lm)
1)基本形式、基本假设、估计方法、参数检验、模型检验
2)一般线性回归、方差分析及协方差分析
3)一般线性回归模型验证
4)一般线性回归模型选择-逐步回归
案例1:鱼类游速与水温关系的回归及协方差分析;
案例2:施肥和种植密度对作物产量的影响
案例3:决定海洋植食性鱼类多样性的决定因子-模型验证
案例4:淡水鱼丰度的环境因子的筛选-逐步回归

1.2广义线性模型(glm)
1) 基本形式、基本假设、估计方法、参数检验、模型检验
2) 0,1数据分析:伯努利分布、二项分布及其过度离散问题
3)计数数据各种情况及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型
4) 广义线性模型的模型比较和选择-似然比LR和AIC
案例1:动物身体特征与患病与否(0,1)的关系的逻辑斯蒂回归
案例2:海豹年龄与攻击行为的关系-0,1数据转化为比率数据分析
案例3:不同实验处理下蚜虫多度的差异分析-计数数据泊松回归
其他案例:零膨胀、零截断数据分析。。。。。。。。。。。。。。。。。。。。

1.3线性混合效应模型(lmm)
1) 线性混合效应模型基本原理
2) 线性混合效应模型建模步骤及实现
3) 线性混合效应模型的预测和模型诊断
4) 线性混合效应模型的多重比较
案例1:睡眠时间与反应速度关系
案例2:多因素实验(分层数据)的多重比较

1.4广义线性混合效应模型(glmm)
1)广义线性混合效应模型基本原理
2)广义线性混合效应模型建模步骤及流程
3)广义线性混合效应模型分析0,1数据
4)广义线性混合效应模型分析计数数据及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型
案例1:蝌蚪“变态”与否(0,1)的多因素分析-逻辑斯蒂混合效应模型
案例2:虫食种子多度影响因素的多变量分析-泊松混合效应模型
案例3:模拟计数数据-零膨胀、零截断、过度离散等广义混合效应模型

专题二:贝叶斯(brms)回归与混合效应(多水平/层次/嵌套)模型
2.1贝叶斯回归及混合效应模型上
1)贝叶斯回归分析简介
2)利用brms实现贝叶斯回归分析简介
3)贝叶斯回归分析的模型诊断、交叉验证、预测和作图
4)贝叶斯广义线性模型实现:gamma分布、伯努利分布、二项分布等
案例1:鱼游速与温度关系的贝叶斯回归-结果解读、模型验证、模型诊断
案例2:森林生物量与林龄关系贝叶斯回归-gamma分布、brms参数调整
案例3:动物身体特征与患病与否(0,1)的关系的贝叶斯回归-伯努利分布
案例4:海豹年龄与攻击行为的关系-0,1数据转化为比率数据分析-二项分布
其他案例:贝叶斯分析计数数据过度离散、零膨胀等问题

2.2贝叶斯回归及混合效应模型下
1)贝叶斯线性混合效应模型:实现步骤、模型验证、多重比较
2)贝叶斯广义混合效应模型-计数数据分析:泊松、负二项、零膨胀泊松、零膨胀负二项等
案例1:睡眠时间与反应速度关系的贝叶斯线性混合效应模型
案例2:教师受欢迎程度的多变量预测-贝叶斯线性混合效应模型
案例3:虫食种子多度(计数数据)影响因素的多变量分析-贝叶斯广义混合效应模型
其他案例:贝叶斯分析计数数据过度离散、零膨胀等问题

专题三:相关数据回归分析:嵌套、时间、空间、系统发育相关数据分析
3.1嵌套型随机效应混合效应模型分析及贝叶斯实现
1)数据分层问题及嵌套型随机效应混合效应模型介绍
2)嵌套型随机效应混合效应模型分析步骤及流程及模型选择(MuMIn)
3)嵌套型随机效应混合效应模型的方差分解:ICC、varcomp及贝叶斯法
4)经典方差分解案例讲解
案例1:不同种类海豚年龄多因素预测模型及模型选择(MuMIn)- 嵌套结构
案例2:纲/科/属/种型嵌套随机效应的方差分解及贝叶斯方法
案例3:物种属性可塑性和基因多样性对物种丰富度影响的相对贡献-全模型变差分解

3.2时间相关数据分析及贝叶斯实现
1)回归模型的方差异质性问题及解决途径
2)时间自相关分析:线性及混合效应模型及贝叶斯方法
3)时间自相关+方差异质性分析及贝叶斯实现
案例1:模拟数据方差异质性问题-gls,lmm及brms方法比较
案例2:鸟类多度变化的时间自相关分析-gls vs brms
案例3:资源脉冲与食谱关系分析:方差异质性+时间相关-lmm vs brms

3.3空间相关数据分析及贝叶斯实现
1)空间自相关概述
2)空间自相关问题解决方式:自相关修正参数、空间距离权重法、空间邻接权重法
3)空间自相关问题修正基本流程-gls和lme
4)空间自相关贝叶斯修正-空间距离权重 VS 空间邻接权重
案例1:北方林物种多样性与气候关系-一般线性回归模型空间自相关问题修正
案例2:全球水鸟巢穴捕食率影响因素分析-混合效应模型空间自相关问题修正

3.4系统发育相关数据分析及贝叶斯实现
1、系统发育简介:系统发育假说、系统发育信号及系统发育树
2、系统发育树及系统发育距离矩阵构建
3、系统发育信息纳入回归模型-广义最小二乘(gls)
4、系统发育信息纳入混合效应模型(lmm/glmm)及贝叶斯方法实现案例
案例1:模拟数据-系统发育相关对物种属性影响-gls vs brms
案例2:全球水鸟巢穴捕食率影响因素分析-系统发育混合效应模型:lmm vs brms

专题四:非线性关系数据分析:广义可加(混合)模型(GAM/GAMM)和非线性(混合)(NLM/NLMM)模型
4.1“线性”回归的含义及非线性关系的判定
4.2广义可加(混合效应)(GAM/GAMM)模型及贝叶斯实现
4.3非线性(混合效应)(NLM/NLMM)模型及贝叶斯实现

原文链接:
https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247615880&idx=5&sn=9dde4dcc335af6bac18dccc8dc2fc5cf&chksm=fa785ab5cd0fd3a32cb23d4d49aebfa20604b09df72402a97a5c23a9aead15047d709e5567d7&token=807046653&lang=zh_CN&scene=21#wechat_redirect
相关文章:
R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用
回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模(Multilevel model)/分层模型(Hierarchical Model)/嵌套模…...
[C++]使用C++部署yolov9的tensorrt模型进行目标检测
部署YOLOv9的TensorRT模型进行目标检测是一个涉及多个步骤的过程,主要包括准备环境、模型转换、编写代码和模型推理。 首先,确保你的开发环境已安装了NVIDIA的TensorRT。TensorRT是一个用于高效推理的SDK,它能对TensorFlow、PyTorch等框架训…...
eureka注册中心做了哪些事情/原理?
1.服务注册: 将eureka client发送过来的元数据存储到注册表中 2.服务续约: eureka client默认会每30秒向eureka server发送一次心跳来进行服务续约,通过这一行动来表示自己没有出现故障; 3.服务…...
c语言经典测试题4
1.题1 #include <stdio.h>//没有break的话,输入什么都会往下一直执行下去,而且default在最后就会全都执行 int main() {char c;int v0 0, v1 0, v2 0;do{switch (c getchar())// 输入ADescriptor{casea:caseA:casee:caseE:casei:caseI:caseo:…...
设计模式(五)-观察者模式
前言 实际业务开发过程中,业务逻辑可能非常复杂,核心业务 N 个子业务。如果都放到一块儿去做,代码可能会很长,耦合度不断攀升,维护起来也麻烦,甚至头疼。还有一些业务场景不需要在一次请求中同步完成&…...
MySQL-七种SQL优化
一、插入数据 普通插入: 采用批量插入(一次插入的数据不建议超过1000条) insert into tb_test values(1,Tom),(3, Cat),(3, Jerry)....手动提交事务 start transaction; insert into tb_test values(1,Tom),(3, Cat),(3, Jerry); insert …...
针对Umi、React中遇到的 “xxxx”不能用作 JSX 组件 问题解决方案
一、处理方案 这是因为"types/react"、"types/react-dom"在子依赖中使用的版本不一致导致,一般情况npm会自动帮我们处理版本不一致的问题。如果npm处理不了,就需要我们自己手动处理在package.json中添加一项配置 {name:"test&…...
蓝桥杯备战刷题one(自用)
1.被污染的支票 #include <iostream> #include <vector> #include <map> #include <algorithm> using namespace std; int main() {int n;cin>>n;vector<int>L;map<int,int>mp;bool ok0;int num;for(int i1;i<n;i){cin>>nu…...
设计模式(十) - 工厂方式模式
前言 在此前的设计模式(四)简单工厂模式中我们介绍了简单工厂模式,在这篇文章中我们来介绍下工厂方法模式,它同样是创建型设计模式,而且又有些类似,文章的末尾会介绍他们之间的不同。 1.工厂方法模式简介 …...
http协议基础与Apache的简单介绍
一、相关介绍: 互联网:是网络的网络,是所有类型网络的母集因特网:世界上最大的互联网网络。即因特网概念从属于互联网概念。习惯上,大家把连接在因特网上的计算机都成为主机。万维网:WWW(world…...
RabbitMQ的死信队列和延迟队列
文章目录 死信队列如何配置死信队列死信队列的应用场景Spring Boot实现RabbitMQ的死信队列 延迟队列方案优劣:延迟队列的实现有两种方式: 死信队列 1)“死信”是RabbitMQ中的一种消息机制。 2)消息变成死信,可能是由于…...
PyQt 逻辑与界面分离
将逻辑与界面分离是一种良好的软件设计实践,可以提高代码的可维护性和可扩展性。在使用 pyuic 工具转换 Qt Designer 的 .ui 文件时,你可以通过以下方式实现逻辑与界面的分离: 创建一个单独的 Python 模块,用于编写主窗口的逻辑代…...
opengl播放3d pose 原地舞蹈脚来回飘动
目录 opengl播放3d pose 原地舞蹈脚来回飘动 设置相机视角 opengl播放3d pose 原地舞蹈脚来回飘动 opengl播放3d pose 原地舞蹈时,脚来回飘动,正常状态是脚应该不动的。 经过反复分析实验验证,找到原因是,渲染计算3d坐标时,都要减去一个offset,这个offset是髋关节的坐…...
Linux环境基础开发工具使用篇(三) git 与 gdb
一、版本控制器-git 1.简单理解: ①git既是服务端,又是客户端 ②git会记录版本的变化 ③git是一个去中心化的分布式软件 git/gitee 是基于git仓库搭建的网站,让版本管理可视化 2.git 三板斧提交代码 查看安装的git版本 git--version 命令行提交代…...
mybatis---->tx中weekend类
🙌首先weekend可不是mybatis中的类呦~~🙌 它是来自于mybatis的一个扩展库! 如果你要在springboot中使用,需要引入以下依赖~~ <dependency><groupId>tk.mybatis</groupId><artifactId>mapper-spring-boot…...
Shell echo、printf、test命令
目录 Shell echo命令 打印文本消息 显示变量值 输出特殊字符 输出到文件 追加到文件 Shell printf 命令 打印简单文本 Shell test 命令 文件测试 字符串比较 整数比较 逻辑运算 Shell echo命令 打印文本消息 echo "Hello, World!" 显示变量值 name&q…...
腾讯云主机Ubuntu22.04安装Odoo17
一、安装PostgreSQL16 参见之前的文章 Ubuntu22.04安装PostgreSQL-CSDN博客 二、安装Odoo17 本方案使用的nightly版的odoo,安装的都是最新版odoo wget -O - https://nightly.odoo.com/odoo.key | apt-key add - echo "deb http://nightly.odoo.com/17.0/n…...
conda常用命令详解
Conda 是一个功能强大的包管理器和环境管理器,用于安装、部署和管理软件包和其依赖关系。下面是一些常用的 Conda 命令及其详细解释: 创建环境: conda create --name myenv python3.8可以指定创建环境的目录conda create --prefix /path/to/d…...
Java面试——锁
公平锁: 是指多个线程按照申请锁的顺序来获取锁,有点先来后到的意思。在并发环境中,每个线程在获取锁时会先查看此锁维护的队列,如果为空,或者当前线程是等待队列的第一个,就占有锁,否则就会…...
Spring Boot与Netty:构建高性能的网络应用
点击下载《Spring Boot与Netty:构建高性能的网络应用》 1. 前言 本文将详细探讨如何在Spring Boot应用中集成Netty,以构建高性能的网络应用。我们将首先了解Netty的原理和优势,然后介绍如何在Spring Boot项目中集成Netty,包括详…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
