当前位置: 首页 > news >正文

分布式系统概念及其应用

分布式系统概念及其应用

随着互联网的飞速发展,数据量和计算需求不断增加,传统的集中式系统已经无法满足这些需求。因此,分布式系统应运而生,它通过将计算任务分散到多台计算机上,实现高效的计算和存储。本文将介绍分布式系统的基本概念、特点以及应用场景,并通过一些代码示例来说明分布式系统的实现。

一、分布式系统基本概念

分布式系统是由多台计算机组成的,它们通过网络相互连接,共同完成一项任务。在分布式系统中,每台计算机都可以独立地执行任务,也可以与其他计算机协作完成任务。分布式系统的核心目标是提高系统的可扩展性、可靠性和性能。

二、分布式系统的特点

**可扩展性:**分布式系统可以通过增加计算机节点来扩展系统的计算能力和存储能力,以满足不断增长的需求。

**高可用性:**分布式系统中的计算机节点可以相互备份,当某个节点出现故障时,其他节点可以接管其任务,保证系统的正常运行。

**高性能:**分布式系统可以将计算任务分散到多个计算机节点上,实现并行计算,从而提高系统的处理速度。

**容错性:**分布式系统具有较强的容错能力,即使部分节点出现故障,整个系统仍然可以正常运行。

三、分布式系统的应用场景

**大数据处理:**分布式系统可以处理海量数据,如Hadoop、Spark等大数据处理框架。

**云计算:**云计算平台(如Amazon AWS、Google Cloud等)利用分布式技术提供弹性计算、存储和服务。

**分布式数据库:**分布式数据库(如Cassandra、MongoDB等)可以实现数据的高可用性和高性能访问。

四、分布式系统的实现

下面我们通过一个简单的Python代码示例来实现一个分布式计算任务。我们将使用MPI(Message Passing Interface)库来实现进程间通信。

首先,安装mpi4py库:

pip install mpi4py

然后,编写一个简单的分布式计算任务的代码:

from mpi4py import MPI
import numpy as npdef main():comm = MPI.COMM_WORLDrank = comm.Get_rank()size = comm.Get_size()if rank == 0:data = np.random.rand(100)np.save('data.npy', data)print(f"Master process {rank} has created data.")else:data = np.load('data.npy')print(f"Worker process {rank} has received data.")local_sum = np.sum(data)global_sum = comm.reduce(local_sum, op=MPI.SUM, root=0)if rank == 0:print(f"Sum of all elements is {global_sum}")else:print(f"Worker process {rank} has calculated local sum {local_sum}")if __name__ == "__main__":main()

在这个示例中,我们创建了一个随机数组,并将其发送到其他进程。每个进程计算数组的部分和,然后将结果发送回主进程。主进程将所有部分和相加,得到最终结果。

五、总结

分布式系统是一种将计算任务分散到多台计算机上的技术,它具有可扩展性、高可用性、高性能和容错性等特点。分布式系统在大数据处理、云计算和分布式数据库等领域有广泛的应用。通过本文的代码示例,我们可以看到分布式系统的实现相对简单,但实际应用中需要考虑更多因素,如网络通信、数据同步等。希望本文能帮助你了解分布式系统的基本概念和应用,为进一步学习和实践打下基础。

相关文章:

分布式系统概念及其应用

分布式系统概念及其应用 随着互联网的飞速发展,数据量和计算需求不断增加,传统的集中式系统已经无法满足这些需求。因此,分布式系统应运而生,它通过将计算任务分散到多台计算机上,实现高效的计算和存储。本文将介绍分…...

数据报文转换

报文转换 &#x1f353;JSON&#x1f352;&#x1f352;JSON多字段映射成一个实体对象&#x1f352;&#x1f352;JSON反序列化为一个带有泛型的JAVA类型 &#x1f353;xml &#x1f353;JSON &#x1f352;&#x1f352;JSON多字段映射成一个实体对象 <dependency><…...

Python爬虫-付费代理推荐和使用

付费代理的使用 相对免费代理来说&#xff0c;付费代理的稳定性更高。本节将介绍爬虫付费代理的相关使用过程。 1. 付费代理分类 付费代理分为两类&#xff1a; 一类提供接口获取海量代理&#xff0c;按天或者按量收费&#xff0c;如讯代理。 一类搭建了代理隧道&#xff0…...

kubectl使用及源码阅读

目录 概述实践样例yaml 中的必须字段 kubectl 代码原理kubectl 命令行设置pprof 抓取火焰图kubectl 中的 cobra 七大分组命令kubectl createcreateCmd中的builder模式createCmd中的visitor访问者模式外层VisitorFunc分析 结束 概述 k8s 版本 v1.24.16 kubectl的职责 1.主要的…...

C++面试宝典第32题:零钱兑换

题目 给定不同面额的硬币coins和一个总金额amount,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,则返回-1。说明:你可以认为每种硬币的数量是无限的。 示例1: 输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = …...

pyspark分布式部署随机森林算法

前言 分布式算法的文章我早就想写了&#xff0c;但是一直比较忙&#xff0c;没有写&#xff0c;最近一个项目又用到了&#xff0c;就记录一下运用Spark部署机器学习分类算法-随机森林的记录过程&#xff0c;写了一个demo。 基于pyspark的随机森林算法预测客户 本次实验采用的…...

【Python笔记-设计模式】中介者模式

一、说明 中介者模式是一种行为设计模式&#xff0c;减少对象之间混乱无序的依赖关系。该模式会限制对象之间的直接交互&#xff0c;迫使它们通过一个中介者对象进行合作。 (一) 解决问题 降低系统中对象之间的直接通信&#xff0c;将复杂的交互转化为通过中介者进行的间接交…...

大语言模型构建的主要四个阶段(各阶段使用的算法、数据、难点以及实践经验)

大语言模型构建通常包含以下四个主要阶段&#xff1a;预训练、有监督微调、奖励建模和强化学习&#xff0c;简要介绍各阶段使用的算法、数据、难点以及实践经验。 预训练 需要利用包含数千亿甚至数万亿 单词的训练数据&#xff0c;并借助由数千块高性能 GPU 和高速网络组成的…...

[云原生] 二进制安装K8S(中)部署网络插件和DNS

书接上文&#xff0c;我们继续部署剩余的插件 一、K8s的CNI网络插件模式 2.1 k8s的三种网络模式 K8S 中 Pod 网络通信&#xff1a; &#xff08;1&#xff09;Pod 内容器与容器之间的通信 在同一个 Pod 内的容器&#xff08;Pod 内的容器是不会跨宿主机的&#xff09;共享…...

云端技术驾驭DAY13——Pod污点、容忍策略、Pod优先级与抢占、容器安全

往期回顾&#xff1a; 云端技术驾驭DAY01——云计算底层技术奥秘、云服务器磁盘技术、虚拟化管理、公有云概述 云端技术驾驭DAY02——华为云管理、云主机管理、跳板机配置、制作私有镜像模板 云端技术驾驭DAY03——云主机网站部署、web集群部署、Elasticsearch安装 云端技术驾驭…...

掌握Docker:让你的应用轻松部署和管理

文章目录 一、引言&#xff08;为什么要学习docker&#xff1f;&#xff09;1.1 环境不一致1.2 隔离性1.3 弹性伸缩1.4 学习成本 二、Docker介绍2.1 Docker的由来2.2 什么是Docker2.3 为什么要用Docker2.3.1 虚拟机2.3.2 Linux容器 2.4 Docker与传统虚拟机的区别2.5 Docker的思…...

5G-A,未来已来

目前&#xff0c;全国首个5G-A规模组网示范完成。这项由北京联通携手华为共同打造的示范项目&#xff0c;实现了北京市中心金融街、历史建筑长话大楼、大型综合性体育场北京工人体育场三个重点场景的连片覆盖。 实际路测结果显示&#xff0c;5G-A用户下行峰值速率达到10Gbps&am…...

智慧公厕让社区生活更美好

随着科技的迅猛发展&#xff0c;城市管理、城市服务均使用科技化的手段进行升级改造&#xff0c;社区生活更美好赋予全新的智慧效能&#xff0c;其中智慧公厕也成为了城市环卫设施的新宠。智慧公厕以物联网、互联网、大数据、云计算、5G通信、自动化控制等技术为核心&#xff0…...

Apache软件基金会的孵化标准和毕业标准

Apache软件基金会的孵化标准和毕业标准是一个项目成功的重要衡量指标。这些标准关注项目的多个方面&#xff0c;包括开放性、合作性、共建性、透明性、技术可行性、社区建设以及用户基础等。在孵化阶段&#xff0c;Apache软件基金会主要关注项目的开放性和合作性。首先&#xf…...

什么是高可用架构

一、什么是高可用 在运维中&#xff0c;经常听到高可用&#xff0c;那么什么是高可用架构呢&#xff1f;通俗点讲&#xff0c;高可用就是在服务故障&#xff0c;节点宕机的情况下&#xff0c;业务能够保证不中断&#xff0c;服务正常运行。 举个例子&#xff0c;支付宝&#…...

【Vuforia+Unity】AR04-地面、桌面平面识别功能(Ground Plane Target)

不论你是否曾有过相关经验,只要跟随本文的步骤,你就可以成功地创建你自己的AR应用。 官方教程Ground Plane in Unity | Vuforia Library 这个功能很棒,但是要求也很不友好,只能支持部分移动设备,具体清单如下: 01.Vuforia的地面识别功能仅支持的设备清单: Recommended…...

【Git】解决‘每次初始化一个新仓库时,都需要执行git config --global --add safe.directory命令‘

问题 这个命令是用来将一个安全目录添加到全局的 Git 配置中。但每次克隆一个仓库或者新建一个仓库&#xff0c;并且对该仓库进行操作时&#xff0c;都需要执行该命令&#xff0c;十分麻烦&#xff01; 这是因为&#xff0c;Git 近期进行了版本升级&#xff0c;添加了新的目录…...

Qt的QThread、QRunnable和QThreadPool的使用

1.相关描述 随机生产1000个数字&#xff0c;然后进行冒泡排序与快速排序。随机生成类继承QThread类、冒泡排序使用moveToThread方法添加到一个线程中、快速排序类继承QRunnable类&#xff0c;添加到线程池中进行排序。 2.相关界面 3.相关代码 widget.cpp #include "widget…...

windows安装部署node.js并搭建Vue项目

一、官网下载安装包 官网地址&#xff1a;https://nodejs.org/zh-cn/download/ 二、安装程序 1、安装过程 如果有C/C编程的需求&#xff0c;勾选一下下图所示的部分&#xff0c;没有的话除了选择一下node.js安装路径&#xff0c;直接一路next 2、测试安装是否成功 【winR】…...

【计算机】本科考研还是就业?

其实现在很多计算机专业的学生考研&#xff0c;也是无奈的选择 技术发展日新月异&#xff0c;而在本科阶段&#xff0c;大家学着落后的技术&#xff0c;出来找工作自然会碰壁。而且现在用人单位的门槛越来越高&#xff0c;学历默认研究生起步&#xff0c;面试一般都是三轮起步…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...