当前位置: 首页 > news >正文

使用pyannote-audio实现声纹分割聚类

使用pyannote-audio实现声纹分割聚类

# GitHub地址
https://github.com/MasonYyp/audio

1 简单介绍

pyannote.audio是用Python编写的用于声纹分割聚类的开源工具包。在PyTorch机器学习基础上,不仅可以借助性能优越的预训练模型和管道实现声纹分割聚类,还可以进一步微调模型。

它的主要功能有以下几个:

  1. 声纹嵌入:从一段声音中提出声纹转换为向量(嵌入);
  2. 声纹识别:从一段声音中识别不同的人(多个人);
  3. 声纹活动检测:检测一段声音检测不同时间点的活动;
  4. 声纹重叠检测:检测一段声音中重叠交叉的部分;
  5. 声纹分割;将一段声音进行分割;

pyannote.audio中主要有”segmentation“、”embedding“和”speaker-diarization“三个模型,”segmentation“的主要作用是分割、”embedding“主要作用是嵌入(跟wespeaker-voxceleb-resnet34-LM作用相同),”speaker-diarization“的作用是使用管道对上面两个模型整合。

pyannote-audio的参考地址

# Huggingface地址
https://hf-mirror.com/pyannote# Github地址
https://github.com/pyannote/pyannote-audio

⚠️ 注意: pyannote.audio不同的版本有些区别;

2 使用pyannote.audio:3.1.3

2.1 安装pyannote.audio

pip install pyannote.audio==3.1.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

使用模型需要现在huggingface上下载模型,模型如下:

⚠️ pyannote.audio的部分模型是收到保护的,即需要在huggingface登录后,填写部分信息,同意相关协议才能下载,否则无法下载。

# 1 嵌入模型 pyannote/wespeaker-voxceleb-resnet34-LM 
https://hf-mirror.com/pyannote/wespeaker-voxceleb-resnet34-LM# 2 分割模型 pyannote/segmentation-3.0
https://hf-mirror.com/pyannote/segmentation-3.0

使用huggingface-cli下载相关模型的命令:

# 注意:需要先创建Python环境# 安装huggingface-cli
pip install -U huggingface_hub# 例如下载pyannote/embedding模型
# 必须提供Hugging上的 --token hf_****
huggingface-cli download --resume-download pyannote/embedding --local-dir pyannote/embedding --local-dir-use-symlinks False --token hf_****

注意两个类

# Inference主要用于声纹嵌入
pyannote.audio import Inference# Annotation主要用于声纹分割
from pyannote.core import Annotation# Annotation中的主要方法,假设实例为;diarization
# 获取声音中说话人的标识
labels = diarization.labels()# 获取声音中全部的活动Segment(列表)
segments = list(diarization.itertracks())# 获取声音中指定说话人时间段(列表),”SPEAKER_00“为第一个说话人的标识
durations = diarization.label_timeline('SPEAKER_00')

2.2 实现声纹分割

注意:pyannote/speaker-diarization-3.1实现声纹识别特别慢,不知道是不是我的方法不对(30分钟的音频,处理了20多分钟)。⚠️ 使用单个模型很快。pyannote/speaker-diarization(版本2)较快,推荐使用pyannote/speaker-diarization(版本2)。

注意:此处加载模型和通常加载模型的思路不同,常规加载模型直接到名称即可,此处需要加载到具体的模型名称。

(1)使用python方法

# 使用 pyannote-audio-3.1.1
import timefrom pyannote.audio import Model
from pyannote.audio.pipelines import SpeakerDiarization
from pyannote.audio.pipelines.utils import PipelineModel
from pyannote.core import Annotation# 语音转向量模型
embedding: PipelineModel = Model.from_pretrained("E:/model/pyannote/pyannote-audio-3.1.1/wespeaker-voxceleb-resnet34-LM/pytorch_model.bin")
# 分割语音模型
segmentation: PipelineModel = Model.from_pretrained("E:/model/pyannote/pyannote-audio-3.1.1/segmentation-3.0/pytorch_model.bin")# 语音分离模型
speaker_diarization: SpeakerDiarization = SpeakerDiarization(segmentation=segmentation, embedding=embedding)# 初始化语音分离模型的参数
HYPER_PARAMETERS = {"clustering": {"method": "centroid","min_cluster_size": 12,"threshold": 0.7045654963945799},"segmentation":{"min_duration_off": 0.58}
}
speaker_diarization.instantiate(HYPER_PARAMETERS)start_time = time.time()# 分离语音
diarization: Annotation = speaker_diarization("E:/语音识别/数据/0-test-en.wav")# 获取说话人列表
print(diarization.labels())
# 获取活动segments列表
print(list(diarization.itertracks()))
print(diarization.label_timeline('SPEAKER_00'))ent_time = time.time()
print(ent_time - start_time)

(2)使用yml方法

# instantiate the pipeline
from pyannote.audio import Pipeline
from pyannote.core import Annotationspeaker_diarization = Pipeline.from_pretrained("E:/model/pyannote/speaker-diarization-3.1/config.yaml")# 分离语音
diarization: Annotation = speaker_diarization("E:/语音识别/数据/0-test-en.wav")print(type(diarization))
print(diarization.labels())

config.yaml

根据文件可以看出,声纹分割是将embedding和segmentation进行了组合。

version: 3.1.0pipeline:name: pyannote.audio.pipelines.SpeakerDiarizationparams:clustering: AgglomerativeClustering# embedding: pyannote/wespeaker-voxceleb-resnet34-LMembedding: E:/model/pyannote/speaker-diarization-3.1/wespeaker-voxceleb-resnet34-LM/pytorch_model.binembedding_batch_size: 32embedding_exclude_overlap: true# segmentation: pyannote/segmentation-3.0segmentation: E:/model/pyannote/speaker-diarization-3.1/segmentation-3.0/pytorch_model.binsegmentation_batch_size: 32params:clustering:method: centroidmin_cluster_size: 12threshold: 0.7045654963945799segmentation:min_duration_off: 0.0

模型目录

模型中的其他文件可以删除,只保留”pytorch_model.bin“即可。

在这里插入图片描述

执行结果

在这里插入图片描述

2.3 实现声纹识别

比较两段声音的相似度。

from pyannote.audio import Model
from pyannote.audio import Inference
from scipy.spatial.distance import cdist# 导入模型
embedding = Model.from_pretrained("E:/model/pyannote/speaker-diarization-3.1/wespeaker-voxceleb-resnet34-LM/pytorch_model.bin")# 抽取声纹
inference: Inference = Inference(embedding, window="whole")# 生成声纹,1维向量
embedding1 = inference("E:/语音识别/数据/0-test-en.wav")
embedding2 = inference("E:/语音识别/数据/0-test-en.wav")# 计算两个声纹的相似度
distance = cdist([embedding1], [embedding2], metric="cosine")
print(distance)

2.4 检测声纹活动


from pyannote.audio import Model
from pyannote.core import Annotation
from pyannote.audio.pipelines import VoiceActivityDetection# 加载模型
model = Model.from_pretrained("E:/model/pyannote/speaker-diarization-3.1/segmentation-3.0/pytorch_model.bin")# 初始化参数
activity_detection = VoiceActivityDetection(segmentation=model)
HYPER_PARAMETERS = {# remove speech regions shorter than that many seconds."min_duration_on": 1,# fill non-speech regions shorter than that many seconds."min_duration_off": 0
}
activity_detection.instantiate(HYPER_PARAMETERS)# 获取活动特征
annotation: Annotation = activity_detection("E:/语音识别/数据/0-test-en.wav")# 获取活动列表
segments = list(annotation.itertracks())
print(segments)

3 使用pyannote.audio:2.1.1

⚠️ 推荐使用此版本

3.1 安装pyannote.audio

# 安装包
pip install pyannote.audio==2.1.1 -i https://pypi.tuna.tsinghua.edu.cn/simple# 1 嵌入模型 pyannote/embedding
https://hf-mirror.com/pyannote/embedding# 2 分割模型 pyannote/segmentation
https://hf-mirror.com/pyannote/segmentation

3.2 实现声纹分割

# 使用 pyannote-audio-2.1.1
import timefrom pyannote.audio.pipelines import SpeakerDiarization
from pyannote.audio import Model
from pyannote.audio.pipelines.utils import PipelineModel
from pyannote.core import Annotation# 语音转向量模型
embedding: PipelineModel = Model.from_pretrained("E:/model/pyannote/pyannote-audio-2.1.1/embedding/pytorch_model.bin")# 分割语音模型
segmentation: PipelineModel = Model.from_pretrained("E:/model/pyannote/pyannote-audio-2.1.1/segmentation/pytorch_model.bin")# 语音分离模型
speaker_diarization: SpeakerDiarization = SpeakerDiarization(segmentation=segmentation,embedding=embedding,clustering="AgglomerativeClustering"
)HYPER_PARAMETERS = {"clustering": {"method": "centroid","min_cluster_size": 15,"threshold": 0.7153814381597874},"segmentation":{"min_duration_off": 0.5817029604921046,"threshold": 0.4442333667381752}
}speaker_diarization.instantiate(HYPER_PARAMETERS)start_time = time.time()
# vad: Annotation = pipeline("E:/语音识别/数据/0-test-en.wav")
diarization: Annotation = speaker_diarization("E:/语音识别/数据/0-test-en.wav")# 获取说话人列表
print(diarization.labels())ent_time = time.time()
print(ent_time - start_time)

3.3 其他功能

3.1.1版本的功能2.1.1都能实现,参考3.1.1版本即可。

相关文章:

使用pyannote-audio实现声纹分割聚类

使用pyannote-audio实现声纹分割聚类 # GitHub地址 https://github.com/MasonYyp/audio1 简单介绍 pyannote.audio是用Python编写的用于声纹分割聚类的开源工具包。在PyTorch机器学习基础上,不仅可以借助性能优越的预训练模型和管道实现声纹分割聚类,还…...

防御保护:防火墙内容安全

一、IAE(Intelligent Awareness Engine)引擎 二、深度检测技术(DFI和DPI) 1.DPI – 深度包检测技术 DPI主要针对完整的数据包(数据包分片,分段需要重组),之后对数据包的内容进行识别。&#x…...

uni-app webview 打开baidu.com

在uni-app中&#xff0c;你可以使用web-view组件来打开外部网页&#xff0c;比如百度首页。以下是一个简单的示例代码&#xff0c;展示了如何在uni-app中使用web-view组件打开百度首页&#xff1a; <template> <view> <web-view :src"baiduUrl">&l…...

【C#】SixLabors.ImageSharp和System.Drawing两者知多少

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握。…...

总是 -bash: gomobile: 命令未找到

总是 -bash: gomobile: 命令未找到 问题描述 我的项目是/Users/$user/go/src/abc.com/project 当我尝试在 /Users/GaryChan/go/src/abc.com/project/sdk 并运行: export ANDROID_HOME/Users/$user/Library/Android/sdk/ndk-bundle/gomobile bind -targetandroid abc.com/p…...

day27【LeetCode】454. 四数相加 II

day27【LeetCode】454. 四数相加 II 1.题目描述 附上题目链接&#xff1a;四数相加 II 给你四个整数数组 nums1、nums2、nums3 和 nums4 &#xff0c;数组长度都是 n &#xff0c;请你计算有多少个元组 (i, j, k, l) 能满足&#xff1a; 0 < i, j, k, l < nnums1[i] …...

UE5 UE4 不同关卡使用Sequence动画

参考自&#xff1a;关于Datasmith导入流程 | 虚幻引擎文档 (unrealengine.com) 关卡中的Sequence动画序列&#xff0c;包含特定关卡中的Actor的引用。 将同一个Sequcen动画资源放入其他关卡&#xff0c;Sequence无法在新关卡中找到相同的Actor&#xff0c;导致报错。 Sequen…...

【JAVA日志】关于日志系统的架构讨论

目录 1.日志系统概述 2.环境搭建 3.应用如何推日志到MQ 4.logstash如何去MQ中取日志 5.如何兼顾分布式链路追踪 1.日志系统概述 关于日志系统&#xff0c;其要支撑的核心能力无非是日志的存储以及查看&#xff0c;最好的查看方式当然是实现可视化。目前市面上有成熟的解决…...

云计算与边缘计算:有何不同?

公共云计算平台可以帮助企业充分利用全球服务器来增强其私有数据中心。这使得基础设施能够扩展到任何位置&#xff0c;并有助于计算资源的灵活扩展。混合公共-私有云为企业计算应用程序提供了强大的灵活性、价值和安全性。 然而&#xff0c;随着分布在全球各地的实时人工智能应…...

「连载」边缘计算(二十)02-23:边缘部分源码(源码分析篇)

&#xff08;接上篇&#xff09; EdgeCore之devicetwin 前面对EdgeCore组件的edged功能模块进行了分析&#xff0c;本节对EdgeCore组件的另一个功能模块devicetwin进行剖析&#xff0c;包括devicetwin的struct调用链剖析、devicetwin的具体逻辑剖析、devicetwin的缓存机制剖析…...

Swagger接口文档管理工具

Swagger 1、Swagger1.1 swagger介绍1.2 项目集成swagger流程1.3 项目集成swagger 2、knife4j2.1 knife4j介绍2.2 项目集成knife4j 1、Swagger 1.1 swagger介绍 官网&#xff1a;https://swagger.io/ Swagger 是一个规范和完整的Web API框架&#xff0c;用于生成、描述、调用和…...

关于HTML5表单验证的方法教程

简介 HTML5表单验证是一种在客户端对用户输入进行验证的方法&#xff0c;可以有效地减少对于服务器端验证的依赖。通过使用HTML5表单验证&#xff0c;可以为用户提供实时的错误提示和更好的用户体验。本教程将介绍如何在HTML5中使用各种验证属性和技术来实现表单验证。 基本表…...

.NET生成MongoDB中的主键ObjectId

前言 因为很多场景下我们需要在创建MongoDB数据的时候提前生成好主键为了返回或者通过主键查询创建的业务&#xff0c;像EF中我们可以生成Guid来&#xff0c;本来想着要不要实现一套MongoDB中ObjectId的&#xff0c;结果发现网上各种各样的实现都有&#xff0c;不过好在阅读C#…...

BeautifulSoup+xpath+re+css简单复习+新的scrapy的学习

1.BeautifulSoupsoup BeautifulSoup(html,html.parser)all_icosoup.find(class_"DivTable") 2.xpath trs resp.xpath("//tbody[idcpdata]/tr") hong tr.xpath("./td[classchartball01 or classchartball20]/text()").extract() 这个意思是找…...

Python爬虫实战:从API获取数据

引言 在现代软件开发中&#xff0c;API已经成为获取数据的主要方式之一。API允许不同的软件应用程序相互通信&#xff0c;共享数据和功能。在本文中&#xff0c;我们将学习如何使用Python从API获取数据&#xff0c;并探讨其在实际应用中的价值。 目录 引言 二、API基础知识 …...

音频转换器哪个好?3款电脑软件+3款手机应用

在当今的数字时代&#xff0c;音频转换已成为许多用户日常的需求。为了帮助您找到最佳的音频转换工具&#xff0c;我们将介绍3款电脑软件和3款手机应用。这些工具都各有特点&#xff0c;能够满足不同用户的需求。 1.电脑软件篇 1.1金舟音频大师 金舟音频大师是一款多功能的音…...

惯性导航 | 运动学---运动模型

惯性导航 | 运动学---运动模型 IMU系统的运动学 IMU系统的运动学 惯性测量单元&#xff08;IMU&#xff09;已经非常普及了。我们在绝大多数电子设备中都能找到IMU&#xff1a;车辆、手机、手表、头盔&#xff0c;甚至足球当中都内置了IMU。它们的体积很小&#xff0c;安装在设…...

Java Web(十一)--JSON Ajax

JSON JSon在线文档&#xff1a; JSON 简介 JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式。轻量级指的是跟xml做比较。数据交换指的是客户端和服务器之间业务数据的传递格式。 它基于 ECMAScript (W3C制定的JS规范)的一个子集&#xff0c;采…...

GL/gl.h: No such file or directory(CentOS8 QT5.12.12)

1.问题描述 新建的QT工程&#xff0c;出现如下问题&#xff1a; GL/gl.h: No such file or directory 2.原因分析 centos系统里面缺少opengl库 3.解决方法 运行命令&#xff1a; yum install mesa-libGL -devel -y...

【外设篇】-显示器

显示屏是一种电光转换工具&#xff0c;现在市面上的显示器都是LCD&#xff08;Liquid Crystal Display&#xff0c;液晶显示器&#xff09; 显示器参数介绍 对比度 是指画面黑与白的比值&#xff0c;对比度越高能使色彩表现越丰富&#xff0c;对比度越高&#xff0c;显示器的…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...