可以用numpy为for加速
Numpy除了用于科学计算,还有一个功能是可以代替某些for循环,进行同样的功能实现,有于是向量矩阵运算,碰到复杂的for时,计算速度可以提高,从而提高程序性能。以下是一些常用的NumPy函数和操作,可以替代多个for循环:
-
向量化操作:NumPy中的函数和操作都是针对整个数组进行的,而不是逐个元素进行操作。这样可以避免使用for循环来遍历数组,并且可以利用底层优化实现高效的计算。实例如下
import numpy as np# 创建两个数组 a = np.array([1, 2, 3]) b = np.array([4, 5, 6])# 使用向量化操作计算两个数组的和 c = a + b print(c) # 输出: [5 7 9]
-
广播(Broadcasting):NumPy中的广播功能可以自动处理不同形状的数组之间的运算,而无需显式地编写循环。广播可以将较小的数组自动扩展为较大的数组,以便进行元素级别的操作。
广播的实例:import numpy as np# 创建一个数组和一个标量 a = np.array([1, 2, 3]) b = 2# 使用广播将标量与数组相加 c = a + b print(c) # 输出: [3 4 5]
-
聚合函数:NumPy提供了许多聚合函数(如sum、mean、max、min等),可以对整个数组或指定轴上的元素进行聚合操作。这些函数可以避免使用for循环来逐个元素进行计算。
聚合函数的实例:import numpy as np# 创建一个二维数组 a = np.array([[1, 2, 3], [4, 5, 6]])# 对整个数组进行求和 sum_a = np.sum(a) print(sum_a) # 输出: 21# 按列求和 sum_axis0 = np.sum(a, axis=0) print(sum_axis0) # 输出: [5 7 9]# 按行求和 sum_axis1 = np.sum(a, axis=1) print(sum_axis1) # 输出: [6 15]
-
矩阵运算:NumPy提供了矩阵运算的函数和操作,如矩阵乘法、转置、逆矩阵等。这些函数可以直接对整个矩阵进行操作,而无需使用for循环逐个元素进行计算。
矩阵运算的实例:import numpy as np# 创建两个矩阵 a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]])# 矩阵乘法 c = print(c) # 输出: [[19 22]# [43 50]]# 矩阵转置 d = np.transpose(a) print(d) # 输出: [[1 3]# [2 4]]# 矩阵逆矩阵 e = np.linalg.inv(a) print(e) # 输出: [[-2. 1. ]# [ 1.5 -0.5]]
-
条件操作:NumPy提供了一些函数和操作,可以根据条件对数组进行操作。例如,可以使用np.where函数根据条件选择数组中的元素,而无需使用for循环逐个元素进行判断。
条件操作的实例:import numpy as np# 创建一个数组 a = np.array([1, 2, 3, 4, 5])# 根据条件选择数组中的元素 b = np.where(a > 2, a, 0) print(b) # 输出: [0 0 3 4 5]
-
向量化函数:NumPy提供了许多向量化函数,可以对整个数组进行元素级别的操作。这些函数可以直接应用于数组,而无需使用for循环逐个元素进行计算。
向量化函数的实例:import numpy as np# 创建一个数组 a = np.array([1, 2, 3])# 使用向量化函数计算数组的平方根 b = np.sqrt(a) print(b) # 输出: [1. 1.41421356 1.73205081]
相关文章:
可以用numpy为for加速
Numpy除了用于科学计算,还有一个功能是可以代替某些for循环,进行同样的功能实现,有于是向量矩阵运算,碰到复杂的for时,计算速度可以提高,从而提高程序性能。以下是一些常用的NumPy函数和操作,可…...
cartographer ceres后端优化
这里引用一篇文章 https://zhuanlan.zhihu.com/p/567635409 因为cartographer中的代码有的地方添加了AddParameterBlock,有的地方没有添加,会引起歧义,原来AddParameterBlock可以隐式添加优化变量,这篇文章介绍了具体原因,核心内容如下: AddParameterBlock的作用作用一:…...

day57 集合 List Set Map
List实现类 List接口特点:元素有序 可重复 Arraylist 可变数组 jdk 8 以前Arraylist容量初始值10 jdk8 之后初始值为0,添加数据时,容量为10; ArrayList与Vector的区别? LinkList:双向链表 优点࿱…...

蓝桥杯:真题讲解3(C++版)附带解析
报纸页数 来自:2016年七届省赛大学C组真题(共8道题) 分析: --画出报纸长的样子,如果我们在上面多画一张报纸,那么就符合题意的5,6,11,12。 观察这张图:观察3…...

继续预训练对大语言模型的影响
翻译自文章:Investigating Continual Pretraining in Large Language Models: Insights and Implications 摘要 本文研究了大型语言模型(LLMs)中不断学习(CL)的不断发展领域,重点是制定有效和可持续的训练…...
关于空频变换的知识点
1.DCT变换: 离散余弦变换是一种将图像从空域转换到频域的技术,它可以将图像分解为频域分量。对于RGB图像,它由红色(R)、绿色(G)和蓝色(B)三个通道组成。当应用DCT变换时…...

纯css实现-让字符串在文字少时显示为居中对齐,而在文字多时显示为左对齐
纯css实现-让字符串在文字少时显示为居中对齐,而在文字多时显示为左对齐 使用flex实现 思路 容器样式(.container): Flex容器的BFC性质使得其内部的子元素(.text-box)在水平方向上能够居中,通过justify-c…...

初学HTMLCSS——盒子模型
盒子模型 盒子:页面中所有的元素(标签),都可以看做是一个 盒子,由盒子将页面中的元素包含在一个矩形区域内,通过盒子的视角更方便的进行页面布局盒子模型组成:内容区域(content&…...

吸猫毛空气净化器哪个好?推荐除猫毛好的宠物空气净化器品牌
如今,越来越多的家庭选择养宠物!虽然家里变得更加温馨,但养宠可能会带来异味和空气中的毛发增多可能会引发健康问题,这也是一个大问题。 但我不想家里到处都是异味,尤其是便便的味道,所以很需要一款能够处…...

【玩转408数据结构】线性表——双链表、循环链表和静态链表(线性表的链式表示 下)
知识回顾 在前面的学习中,我们已经了解到了链表(线性表的链式存储)的一些基本特点,并且深入的研究探讨了单链表的一些特性,我们知道,单链表在实现插入删除上,是要比顺序表方便的,但是…...

分布式概念
分布式概念 一、分布式介绍1.1 分布式计算1.1.1 分布式计算的方法1.1.1 分布式计算与互联网的普及1.1.2 分布式计算项目1.1.3 参与计算 1.2 分布式存储系统1.2.1 P2P 数据存储系统1.2.2 云存储系统 1.3 应用 二、分布式基础概念2.1 微服务2.2 集群2.3 分布式2.4 节点2.5 远程调…...
vue中的ref/reactive区别及原理
Vue中的ref和reactive是两种不同的数据响应式管理方式。 ref是Vue 3中新加入的特性,它可以将一个普通的JavaScript对象转换为响应式对象。通过ref创建的响应式对象在访问和修改时会自动触发重新渲染。ref返回的是一个包含value属性的对象,访问或修改数据…...

深度学习介绍与环境搭建
深度学习介绍与环境搭建 慕课大学人工智能学习笔记,自己学习记录用的。(赋上连接) https://www.icourse163.org/learn/ZUCC-1206146808?tid1471365447#/learn/content?typedetail&id1256424053&cid1289366515人工智能、机器学习与…...

QT C++实践|超详细数据库的连接和增删改查操作|附源码
0:前言 🪧 什么情况需要数据库? 1 大规模的数据需要处理(比如上千上万的数据量)2 需要把数据信息存储起来,无论是本地还是服务上,而不是断电后数据信息就消失了。 如果不是上面的原因化,一般…...

matlab:涉及复杂函数图像的交点求解
matlab:涉及复杂函数图像的交点求解 在MATLAB中求解两个图像的交点是一个常见的需求。本文将通过一个示例,展示如何求解两个图像的交点,并提供相应的MATLAB代码。 画出图像 首先,我们需要绘制两个图像,以便直观地看…...

Unity(第二十二部)官方的反向动力学一般使用商城的IK插件,这个用的不多
反向动力学(Inverse Kinematic,简称IK)是一种通过子节点带动父节点运动的方法。 正向动力学 在骨骼动画中,大多数动画是通过将骨架中的关节角度旋转到预定值来生成的,子关节的位置根据父关节的旋转而改变,这…...
nginx反向代理,获取客户端ip
一、获取客户端ip代码 /*** description: 获取客户端IP* return string*/ public static function getClientIp(){$ip ;if(getenv(HTTP_CLIENT_IP) && strcasecmp(getenv(HTTP_CLIENT_IP),unknown)){$ip getenv(HTTP_CLIENT_IP);}else if(getenv(HTTP_X_FORWARDED_F…...
13 Codeforces Round 886 (Div. 4)G. The Morning Star(简单容斥)
G. The Morning Star 思路:用map记录x,y,以及y-x、yx从前往后统计一遍答案即可公式 a n s c n t [ x ] c n t [ y ] − 2 ∗ c n t [ x , y ] c n t [ y x ] c n t [ y − x ] anscnt[x]cnt[y]-2 * cnt[x,y]cnt[yx]cnt[y-x] anscnt[x]…...

CLion 2023:专注于C和C++编程的智能IDE mac/win版
JetBrains CLion 2023是一款专为C和C开发者设计的集成开发环境(IDE),它集成了许多先进的功能,旨在提高开发效率和生产力。 CLion 2023软件获取 CLion 2023的智能代码编辑器提供了丰富的代码补全和提示功能,使您能够更…...

数据可视化基础与应用-02-基于powerbi实现连锁糕点店数据集的仪表盘制作
总结 本系列是数据可视化基础与应用的第02篇,主要介绍基于powerbi实现一个连锁糕点店数据集的仪表盘制作。 数据集描述 有一个数据集,包含四张工作簿,每个工作簿是一张表,其中可以销售表可以划分为事实表,产品表&am…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...