当前位置: 首页 > news >正文

代码随想录算法训练营第四十七天丨198. 打家劫舍、​ 213. 打家劫舍 II​、337. 打家劫舍 III

198. 打家劫舍

自己的思路:

初始化两个dp数组,dp[i][0]表示不偷第i户,在0-i户可以偷到的最大金额,dp[i][1]表示偷i户在0-i户可以偷到的最大金额。

class Solution:def rob(self, nums: List[int]) -> int:n = len(nums)dp = [[0] * 2 for _ in range(n)]dp[0][1] = nums[0]for i in range(1, n):dp[i][0] = max(dp[i - 1][0], dp[i - 1][1])dp[i][1] = dp[i - 1][0] + nums[i]return max(dp[n - 1][0], dp[n - 1][1])

优化:

有一点臃肿,可以优化。dp[i][1]实际上跟dp[i-1][1]就没啥关系,直接把dp数组初始化成一维的就行了。

class Solution:def rob(self, nums: List[int]) -> int:n = len(nums)if n == 1:return nums[0]if n == 2:return max(nums[0], nums[1])dp = [0] * ndp[0] = nums[0]dp[1] = max(nums[0], nums[1])for i in range(2, n):dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])return dp[n - 1]

更优化:

想起了斐波那契数列...

class Solution:def rob(self, nums: List[int]) -> int:n = len(nums)if n == 1:return nums[0]if n == 2:return max(nums[0], nums[1])prev = nums[0]cur = max(nums[0], nums[1])for i in range(2, n):prev, cur = cur, max(cur, prev + nums[i])return cur

 213. 打家劫舍 II

还是比较容易想到的,把环展成两个线性的,一个去头一个去尾即可。

class Solution:def rob(self, nums: List[int]) -> int:n = len(nums)if n == 1:return nums[0]if n == 2:return max(nums[0], nums[1])def helper(n, nums):dp = [0] * ndp[0] = nums[0]dp[1] = max(nums[0], nums[1])for i in range(2, n):dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])return dp[n - 1]return max(helper(n-1, nums[1:]), helper(n-1, nums[:-1]))

337. 打家劫舍 III

我的思路:

有点类似贪心的最后一题。

一顿操作AC了,中间遗漏了几种情况,修改后正确了。

class Solution:def rob(self, root: Optional[TreeNode]) -> int:def helper(root):if not root.left and not root.right:return 0, root.valelif root.left and root.right:left_without_self, left_with_self = helper(root.left)right_without_self, right_with_self = helper(root.right)return max(left_without_self + right_without_self, left_with_self + right_with_self, left_without_self + right_with_self, left_with_self + right_without_self), left_without_self + right_without_self + root.valelif root.left and not root.right:left_without_self, left_with_self = helper(root.left)return max(left_with_self, left_without_self), left_without_self + root.valelif root.right and not root.left:right_without_self, right_with_self = helper(root.right)return max(right_with_self, right_without_self), right_without_self + root.valreturn max(helper(root))

优化:

终止条件从叶子节点改成空节点,可以将之后的情况全部统一起来。

class Solution:def rob(self, root: Optional[TreeNode]) -> int:def helper(root):if not root:return 0, 0left = helper(root.left)right = helper(root.right)not_include = max(left) + max(right)include = left[0] + right[0] + root.valreturn not_include, includereturn max(helper(root))

带备忘的递归:

class Solution:def rob(self, root: Optional[TreeNode]) -> int:memo = {}def helper(node):if not node:return 0if node in memo:return memo[node]val = node.val# 如果偷当前节点,则不能偷其直接的左右子节点,但可以偷其孙子节点if node.left:val += helper(node.left.left) + helper(node.left.right)if node.right:val += helper(node.right.left) + helper(node.right.right)# 不偷当前节点,可以偷其左右子节点not_steal = helper(node.left) + helper(node.right)# 对于当前节点,选择偷与不偷的最大值result = max(val, not_steal)memo[node] = resultreturn resultreturn helper(root)

今日总结:

自己写能AC,都能get到要点~~~精简的代码还是得看题解。

相关文章:

代码随想录算法训练营第四十七天丨198. 打家劫舍、​ 213. 打家劫舍 II​、337. 打家劫舍 III

198. 打家劫舍 自己的思路: 初始化两个dp数组,dp[i][0]表示不偷第i户,在0-i户可以偷到的最大金额,dp[i][1]表示偷i户在0-i户可以偷到的最大金额。 class Solution:def rob(self, nums: List[int]) -> int:n len(nums)dp […...

龙蜥Anolis 8.4 anck 安装mysql5.7

el8没有用mysql5.7了,镜像里是mysql8。 禁用 sudo dnf remove mysql sudo dnf module reset mysql sudo dnf module disable mysql 修改Yum源 sudo vi /etc/yum.repos.d/mysql-community.repo [mysql57-community] nameMySQL 5.7 Community Server baseurlhttp:…...

【踩坑】修复xrdp无法关闭Authentication Required验证窗口

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 问题如下,时不时出现,有时还怎么都关不掉,很烦: 解决方法一:命令行输入 dbus-send --typemethod_call --destorg.gnome.Shell /org/gnome/Shell org.gn…...

python学习笔记 - 标准库常量

Python 中有一些内置的常量,它们是一些特殊的值,通常不会改变。以下是其中一些常见的内置常量及其详细解释以及使用示例: True: 表示布尔值真。给 True 赋值是非法的并会引发 SyntaxError。 x True print(x) # 输出&#xff1a…...

视频和音频使用ffmpeg进行合并和分离(MP4)

1.下载ffmpeg 官网地址:https://ffmpeg.org/download.html 2.配置环境变量 此电脑右键点击 属性 - 高级系统配置 -高级 -环境变量 - 系统变量 path 新增 文件的bin路径 3.验证配置成功 ffmpeg -version 返回版本信息说明配置成功4.执行合并 ffmpeg -i 武家坡20…...

02| JVM堆中垃圾回收的大致过程

如果一直在创建对象,堆中年轻代中Eden区会逐渐放满,如果Eden放满,会触发minor GC回收,创建对象的时GC Roots,如果存在于里面的对象,则被视为非垃圾对象,不会被此次gc回收,就会被移入…...

R语言数据可视化之美专业图表绘制指南(增强版):第1章 R语言编程与绘图基础

第1章 R语言编程与绘图基础 目录 第1章 R语言编程与绘图基础前言1.1 学术图表的基本概念1.1.1 学术图表的基本作用1.1.2基本类别1.1.3 学术图表的绘制原则 1.2 你为什么要选择R1.3 安装 前言 这是我第一次在博客里展示学习中国作者的教材的笔记。我选择这本书的依据是作者同时…...

网站添加pwa操作和配置manifest.json后,没有效果排查问题

pwa技术官网:https://web.dev/learn/pwa 应用清单manifest.json文件字段说明:https://web.dev/articles/add-manifest?hlzh-cn Web App Manifest:Web App Manifest | MDN 当网站添加了manifest.json文件后,也引入到html中了&a…...

MongoDB聚合运算符:$cosh

文章目录 语法使用举例双曲余弦值角度双曲余弦值弧度 $cosh聚合运算符用来计算双曲余弦值&#xff0c;返回指定表达式的双曲余弦值。 语法 { $cosh: <expression> }<expression>为可被解析为数值的表达式$cosh返回弧度&#xff0c;使用$radiansToDegrees运算符可…...

Jenkins配置在远程服务器上执行shell脚本(两种方式)

Jenkins配置在远程服务器上执行shell脚本 方式一&#xff1a;通过SSH免密方式执行 说明&#xff1a;Jenkins部署在ServerA&#xff1a;10.1.1.74上&#xff0c;要运行的程序在ServerB&#xff1a;10.1.1.196 分两步 第一步&#xff1a;Linux Centos7配置SSH免密登录 Linux…...

Java+SpringBoot,打造社区疫情信息新生态

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…...

js ES6判断字符串是否以某个字符串开头或者结尾startsWith、endsWith

1.前言 startsWith&#xff1a;startsWith方法用于检查字符串是否以指定的字符串开头。 endsWith&#xff1a;endsWith方法用于检查字符串是否以指定的字符串结尾。 2.用法示例 const str Hello, world!;console.log(str.startsWith(Hello)); // true console.log(str.starts…...

预研项目完成后小批量验证(技术变更流程)

...

Bert-as-service 实战

参考&#xff1a;bert-as-service 详细使用指南写给初学者-CSDN博客 GitHub - ymcui/Chinese-BERT-wwm: Pre-Training with Whole Word Masking for Chinese BERT&#xff08;中文BERT-wwm系列模型&#xff09; 下载&#xff1a;https://storage.googleapis.com/bert_models/…...

微信小程序(四十七)多个token存储

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.基础存储模板 2.中括号实现变量名匹配 源码&#xff1a; app.js App({//提前声明的变量名token:wx.getStorageSync(toke),refreshToken:wx.getSystemInfoAsync(refreshToken),setToken(key,token){//保存token到全局…...

机器学习(II)--样本不平衡

现实中&#xff0c;样本&#xff08;类别&#xff09;样本不平衡&#xff08;class-imbalance&#xff09;是一种常见的现象&#xff0c;如&#xff1a;金融欺诈交易检测&#xff0c;欺诈交易的订单样本通常是占总交易数量的极少部分&#xff0c;而且对于有些任务而言少数样本更…...

几个好用的 VUE Table

Vue easytable - 功能恰到好处 无学习成本 上手就用Vue good table - UI 清新 功能直给 适合小项目Vxe table - 宝藏级 table 组件 高级功能低调好用 维护频率高tabulator - 元老级 table 组件 高级功能平民化AG Grid - 媲美 Excel 的 Table 组件 能想到的复杂功能它都能做到...

Vue源码系列讲解——实例方法篇【三】(生命周期相关方法)

目录 0. 前言 1. vm.$mount 1.1 用法回顾 1.2 内部原理 2. vm.$forceUpdate 2.1 用法回顾 2.2 内部原理 3. vm.$nextTick 3.1 用法回顾 3.2 JS的运行机制 3.3 内部原理 能力检测 执行回调队列 4. vm.$destory 4.1 用法回顾 4.2 内部原理 0. 前言 与生命周期相关…...

百度SEO工具,自动更新网站的工具

在网站SEO的过程中&#xff0c;不断更新网站内容是提升排名和吸引流量的关键之一。而对于大多数网站管理员来说&#xff0c;频繁手动更新文章并进行SEO优化可能会是一项繁琐且耗时的任务。针对这一问题&#xff0c;百度自动更新文章SEO工具应运而生&#xff0c;它能够帮助网站管…...

供应链|NUS覃含章MS论文解读:数据驱动下联合定价和库存控制的近似方法 (二)

编者按 本次解读的文章发表于 Management Science&#xff0c;原文信息&#xff1a;Hanzhang Qin, David Simchi-Levi, Li Wang (2022) Data-Driven Approximation Schemes for Joint Pricing and Inventory Control Models. https://doi.org/10.1287/mnsc.2021.4212 文章在数…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...