python模型训练
目录
1、新建模型 train_model.py
2、运行模型
(1)首先会下载data文件库
(2)完成之后会开始训练模型(10次)
3、 训练好之后,进入命令集
4、输入命令:python -m tensorboard.main --logdir="C:\Users\15535\Desktop\day6\train"
(1)目录的绝对路径获得方法
5、打开网页可视化图形
(1)运行完之后会自动有一个网址,点进去
(2)显示
1、新建模型 train_model.py
import torch
import torchvision.transforms
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn as nn
from torch.nn import CrossEntropyLoss#step1.下载数据集train_data=datasets.CIFAR10('./data',train=True,\transform=torchvision.transforms.ToTensor(),download=True)
test_data=datasets.CIFAR10('./data',train=False,\transform=torchvision.transforms.ToTensor(),download=True)print(len(train_data))
print(len(test_data))#step2.数据集打包
train_data_loader=DataLoader(train_data,batch_size=64,shuffle=False)
test_data_loader=DataLoader(test_data,batch_size=64,shuffle=False)#step3.搭建网络模型class My_Module(nn.Module):def __init__(self):super(My_Module,self).__init__()#64*32*32*32self.conv1=nn.Conv2d(in_channels=3,out_channels=32,\kernel_size=5,padding=2)#64*32*16*16self.maxpool1=nn.MaxPool2d(2)#64*32*16*16self.conv2=nn.Conv2d(in_channels=32,out_channels=32,\kernel_size=5,padding=2)#64*32*8*8self.maxpool2=nn.MaxPool2d(2)#64*64*8*8self.conv3=nn.Conv2d(in_channels=32,out_channels=64,\kernel_size=5,padding=2)#64*64*4*4self.maxpool3=nn.MaxPool2d(2)#线性化self.flatten=nn.Flatten()self.linear1=nn.Linear(in_features=1024,out_features=64)self.linear2=nn.Linear(in_features=64,out_features=10)def forward(self,input):#input:64,3,32,32output1=self.conv1(input)output2=self.maxpool1(output1)output3=self.conv2(output2)output4=self.maxpool2(output3)output5=self.conv3(output4)output6=self.maxpool3(output5)output7=self.flatten(output6)output8=self.linear1(output7)output9=self.linear2(output8)return output9my_model=My_Module()
# print(my_model)
loss_func=CrossEntropyLoss()#衡量模型训练的过程(输入输出之间的差值)
#优化器,lr越大模型就越“聪明”
optim = torch.optim.SGD(my_model.parameters(),lr=0.001)writer=SummaryWriter('./train')
#################################训练###############################
for looptime in range(10): #模型训练的次数:10print("------looptime:{}------".format(looptime+1))num=0loss_all=0for data in (train_data_loader):num+=1#前向imgs, targets = dataoutput = my_model(imgs)loss_train = loss_func(output,targets)loss_all=loss_all+loss_trainif num%100==0:print(loss_train)#后向backward 三步法 获取最小的损失函数optim.zero_grad()loss_train.backward()optim.step()# print(output.shape)loss_av=loss_all/len(test_data_loader)print(loss_av)writer.add_scalar('train_loss',loss_av,looptime)writer.close()
#################################验证#########################with torch.no_grad():accuracy=0test_loss_all=0for data in test_data_loader:imgs,targets = dataoutput = my_model(imgs)loss_test = loss_func(output,targets)#output.argmax(1)---输出标签accuracy=(output.argmax(1)==targets).sum()test_loss_all = test_loss_all+loss_testtest_loss_av = test_loss_all/len(test_data_loader)acc_av = accuracy/len(test_data_loader)print("测试集的平均损失{},测试集的准确率{}".format(test_loss_av,acc_av))writer.add_scalar('test_loss',test_loss_av,looptime)writer.add_scalar('acc',acc_av,looptime)writer.close()
2、运行模型
(1)首先会下载data文件库
(2)完成之后会开始训练模型(10次)

3、 训练好之后,进入命令集

4、输入命令:python -m tensorboard.main --logdir="C:\Users\15535\Desktop\day6\train"

(1)目录的绝对路径获得方法
执行下面的操作自动复制


5、打开网页可视化图形
(1)运行完之后会自动有一个网址,点进去

(2)显示

相关文章:
python模型训练
目录 1、新建模型 train_model.py 2、运行模型 (1)首先会下载data文件库 (2)完成之后会开始训练模型(10次) 3、 训练好之后,进入命令集 4、输入命令:python -m tensorboard.ma…...
逆向案例三:动态xhr包中AES解密的一般步骤,以精灵数据为例
补充知识:进行AES解密需要知道四个关键字,即密钥key,向量iv,模式mode,填充方式pad 一般网页AES都是16位的,m3u8视频加密一般是AES-128格式 网页链接:https://www.jinglingshuju.com/articles 进行抓包结果返回的是密文: 一般思…...
超越CPU和GPU:引领AI进化的LPU
什么是CPU CPU(Central Processing Unit)是由数十亿个晶体管构成的,可以拥有多个处理核心,通常被称为计算机的“大脑”。它对所有现代计算系统至关重要,因为它执行计算机和操作系统所需的命令和进程。CPU在决定程序运…...
MySQL 逗号分隔查询--find_in_set()函数
业务场景: 在使用MySQL的时候,可能的某个字段存储的是一个英文逗号分割的字符串(这里我们不讨论表设计的合理性),如图所示: 我们在查询的时候需要匹配逗号分割中的某个字符串,该怎么查询呢&am…...
【物联网应用案例】智能农业的 9 个技术用例
一、农业中的物联网用例 一般而言,农业物联网传感器以及农业物联网应用有多种类型: 1. 气候条件监测 气象站无疑是当今智能农业领域最受欢迎的设备。这款设备集成了多种智能农业传感器,能够在现场对各类数据进行收集,然后迅速将…...
前端开发——ElementUI组件的使用
文章目录 1. Tabs标签页2. 单选框 el-radio3. 复选框 el-checkbox4. 下拉框 el-select5. 表格 el-table6. 对话框 el-dialog7. 文字提示 el-tooltip8. 抽屉 el-drawer 1. Tabs标签页 <template><el-tabs v-model"activeName" tab-click"handleClick&q…...
Unity编写Shader内置各种矩阵和方法介绍
嗨,各位小伙伴们,我是你们的好朋友咕噜铁蛋!今天,我们要来聊一聊关于Unity中编写Shader时内置的各种矩阵和方法。作为Unity开发者,掌握Shader编写是非常重要的一项技能,而了解内置的矩阵和方法将帮助我们更…...
初学者如何使用QT新建一个包含UI界面的C++项目
文章目录 一、下载并安装QT51、下载安装包2、注册/登录账号3、安装qt6 二、新建QT Widget项目1、新建项目并且运行2、易错点:可能运行成功得到UI界面但是会报错(原因是使用了中文路径) 一、下载并安装QT5 1、下载安装包 进入下载网址 Windo…...
韦东山嵌入式Liunx入门驱动开发四
文章目录 一、异常与中断的概念及处理流程1-1 中断的引入1-2 栈(1) CPU实现a ab的过程(2) 进程与线程 1-3 Linux系统对中断处理的演进1-4 Linux 中断系统中的重要数据结构(1) irq_desc 结构体(2) irqaction 结构体(3) irq_data 结构体(4) irq_domain 结构体(5) irq_domain 结构…...
ubuntu基础操作(1)-个人笔记
搜狗输入法Linux官网-首页搜狗输入法for linux—支持全拼、简拼、模糊音、云输入、皮肤、中英混输https://pinyin.sogou.com/linux 1.关闭sudo密码: 终端(ctrl alt t)输入 sudo visudo 打开visudo 找到 %sudo ALL(ALL:ALL) ALL 这一行…...
Spring Cloud2022之OpenFeign使用以及部分源码分析
OpenFeign使用 Feign和OpenFeign Feign是Netflix开发的⼀个轻量级RESTful的HTTP服务客户端,可以使用⽤它来发起请求,进行远程调用。Fegin是以Java接口注解的⽅式调⽤Http请求,而不是像RestTemplate那样,在Java中通过封装HTTP请求…...
【非比较排序】计算排序算法
目录 CountSort计数排序 整体思想 图解分析 代码实现 时间复杂度&优缺分析 CountSort计数排序 计数排序是一种非比较排序,不需要像前面的排序一样去比较。 计数排序的特性总结: 1. 计数排序在数据范围集中时,效率很高,但…...
数据结构与算法 - 数组与二分查找 + Leetcode典型题
1. 什么是数组 数组是存放在连续内存空间上的相同类型数据的集合。 数组可以方便的通过下标索引的方式获取到下标下对应的数据。 C中二维数组在地址空间上也是连续的。 需注意: 数组的下标从0开始。数组内存空间的地址是连续的。数组的元素是不能删的,…...
SQL进阶(三):Join 小技巧:提升数据的处理速度
复杂数据结构处理:Join 小技巧:提升数据的处理速度 本文是在原本sql闯关的基础上总结得来,加入了自己的理解以及疑问解答(by GPT4) 原活动链接 用到的数据:链接 提取码:l03e 目录 1. 课前小问…...
开发知识点-.netC#图形用户界面开发之WPF
C#图形用户界面开发 NuGet框架简介WinForms(Windows Forms):WPF(Windows Presentation Foundation):UWP(Universal Windows Platform):MAUI(Multi-platform App UI):选择控件参考文章随笔分类 - WPF入门基础教程系列...
基于springboot实现流浪动物救助网站系统项目【项目源码+论文说明】
基于springboot实现流浪动物救助网站系统演示 摘要 然而随着生活的加快,也使很多潜在的危险日益突显出来,比如在各种地方会发现很多无家可归的、伤痕累累的、可怜兮兮的动物,当碰到这种情况,是否会立马伸出双手去帮助、救助它们&…...
灰度负载均衡和普通负载均衡有什么区别
灰度负载均衡(Gray Load Balancing)与普通负载均衡的主要区别在于它们服务发布和流量管理的方式。 灰度负载均衡 目的:主要用于灰度发布,即逐步向用户发布新版本的服务,以减少新版本可能带来的风险。工作方式&#x…...
【二分查找】朴素二分查找
二分查找 题目描述 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。 示例 1: 输入: nums [-1,0,3,5,9,12], target 9…...
Windows Docker 部署 Redis
部署 Redis 打开 Docker Desktop,切换到 Linux 内核。然后在 PowerShell 执行下面命令,即可启动一个 redis 服务。这里安装的是 7.2.4 版本,如果需要安装其他或者最新版本,可以到 Docker Hub 中进行查找。 docker run -d --nam…...
什么是VR虚拟现实|虚拟科技博物馆|VR设备购买
虚拟现实(Virtual Reality,简称VR)是一种通过计算机技术模拟出的一种全新的人机交互方式。它可以通过专门的设备(如头戴式显示器)将用户带入一个计算机生成的虚拟环境之中,使用户能够与这个虚拟环境进行交互…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
