昇腾ACL应用开发之硬件编解码dvpp
1.前言
在我们进行实际的应用开发时,都会随着对一款产品或者AI芯片的了解加深,大家都会想到有什么可以加速预处理啊或者后处理的手段?常见的不同厂家对于应用开发的时候,都会提供一个硬件解码和硬件编码的能力,这也是抛弃了传统的opencv或者pl等在cpu上话费多的时间进行视频解码和编码,而对于昇腾产品,310一系列产品来说,他也会有自己的数据媒体处理单元,如下图所示:参考学习链接:
昇腾社区-官网丨昇腾万里 让智能无所不及

硬件产品结构示意图,内置的有dvpp模块用于数据预处理,AI core用于矩阵、向量等计算;不会占用cpu的资源,刚了解昇腾框架的伙伴可能会用下面的开发顺序进行编写代码:

(1)首先输入视频源的选择:rtsp流、视频、图片等
(2)直接使用opencv的api进行读取,也就是解码,其实opencv读取视频还是蛮快的,读取rtsp确实有一些慢,而且还占用cpu的资源,
(3)使用opencv解码出来之后的图片是,bgr,uint8,NHWC格式的图片,对于不同的模型输入,需要进行转换为模型需要的输入,比如resize缩放图片指定大小,数据格式转换从uint8 到float32 16\以及通道的变换,这一步也是大家的预处理。
(4)送入模型进行推理,大家可以做int8量化之类的操作
(5)模型后处理,对输出的数据进行筛选,获取最终的目标。
(6)opencv直接显示或者数据编码使用ffmpeg或者其他工具进行推流
以下是使用ACL我在整个端到端应用开发时总结的比较优选方案:
(1)使用dvpp进行rtsp和视频的解码,dvpp解码之后的数据为yuv420sp,是在device中的数据,无需内存拷贝,这个过程是将h264/h265的码流解码为yuv的数据,这一过程会在npu硬件执行,但是底层的实现是先通过ffmpeg进行解封装,再进行dvpp解码,内部实现了多线程:参考样例如下:
cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_video_DVPP_with_AIPP/src/sample_process.cpp · Ascend/samples - Gitee.com
g_cap_ = new AclLiteVideoProc(g_streamName_);stream是视频路径或者rtsp
ImageData testPic;
AclLiteError ret = g_cap_->Read(testPic);
将解码数据传送到testpic结构体中:
这个ImageDATA 结构体如下:
struct ImageData {acldvppPixelFormat format;uint32_t width = 0;uint32_t height = 0;uint32_t alignWidth = 0;uint32_t alignHeight = 0;uint32_t size = 0;std::shared_ptr<uint8_t> data = nullptr;
};
(2)解码之后通过VPC进行图像缩放,由于dvpp解码之后的数据为YUV格式,所以模型转换的时候需要配合aipp,将模型的输入改为yuv输入与模型对齐。
ImageData resizedImage;ret = g_dvpp_.Resize(resizedImage, testPic, g_modelInputWidth, g_modelInputHeight);
(3)将数据直接存入模型中进行推理:
(4)模型的后处理,怎么和原图进行画框,可以将原始的yuv图片转换为opencv的图片进行画框,或者使用frretype直接在yuv上进行画框,参考案例如下:
方法一:将device的原图拷贝到cpu测转换为cv::mat类型进行画框:
ImageData yuvImage;ret = CopyImageToLocal(yuvImage, testPic, g_runMode_);if (ret == ACLLITE_ERROR) {ACLLITE_LOG_ERROR("Copy image to host failed");return ACLLITE_ERROR;}cv::Mat yuvimg(yuvImage.height * 3 / 2, yuvImage.width, CV_8UC1, yuvImage.data.get());cv::Mat origImage;cv::cvtColor(yuvimg, origImage, CV_YUV2BGR_NV12);
方法二;直接在yuv上进行绘制目标框图:参考案例如下:
samples: CANN Samples - Gitee.com
(5)将画框后的数据硬件编码为h264文件用于ffmpeg进行推流,编码代码流程参考案例:
samples: CANN Samples - Gitee.com
由于ACL仅支持编码yuv的图片到h264/265所以建议大家可以使用第二种方法进行编码,不需要再次使用ffmpeg进行软件编码,大大可以节约时间。
整个流程可以在原来的软件编码情况下快1.5倍左右。关于ffmpeg推流可以加我学习群或者网上找一些简单的源码推流工具,如果大家有兴趣可以加入a群:855986726
下一章我们继续讲解如何进行多模型串联推理,
相关文章:
昇腾ACL应用开发之硬件编解码dvpp
1.前言 在我们进行实际的应用开发时,都会随着对一款产品或者AI芯片的了解加深,大家都会想到有什么可以加速预处理啊或者后处理的手段?常见的不同厂家对于应用开发的时候,都会提供一个硬件解码和硬件编码的能力,这也是抛…...
MFC 模态对话框退出机制的探究
一位读者问了这样一个问题: ” 如果我创建了一个可见的模态对话框,却对用户来说不可用。举个例子,假设我在程序中的其他位置收到一个事件,并且我从事件中调用模态 CDialog 上的 DestroyWindow。我注意到 OnDestroy 是在 CDialog 上调用的,但在将 WM_QUIT 消息发送到模态对…...
Android13 framework添加关机接口
framework层修改: t0_sys/frameworks/base/core/api/current.txt method RequiresPermission(android.Manifest.permission.REBOOT) public void reboot(Nullable String);method public void rebootp();t0_sys/frameworks/base/core/java/android/os/IPowerManager…...
如何使用ArcGIS Pro为栅格图添加坐标信息
在某些时候,我们从网上获取的资源是一张普通的栅格图,没有任何的坐标信息,如果想要和带坐标信息的数据一起使用就需要先添加坐标信息,在GIS上,我们把这个过程叫做地理配准,这里为大家介绍一下地理配准的方法…...
FDM打印机学习
以下内容摘自网络,仅供学习讨论,侵删。 持续更新。。。 FDM打印机是通过喷头融化丝状耗材(PLA,ABS等材料),然后逐层涂在热床上,一层一层逐级抬高。 结构分类 Prusa i3型是一种龙门结构&#…...
C++进阶-- map和set
关联式容器 在前面,我们所学的vector、list、deque,这些都是序列容器,也就是底层为线性序列的数据结构。 而关联式容器是C标准库中的一种类别,用于存储键值对(key-value pair),关联式容器中的元…...
AI-数学-高中-33概率-事件的关系与运算
原作者视频:【概率】【一数辞典】2事件的关系与运算_哔哩哔哩_bilibili 事件: 和/并事件;积/交事件;互诉事件;对立(补集)事件;...
数据结构:链队
一、定义两个结构体 定义两个结构体,一个结构体是结点的结构体,一个结构体是保留指向对头结点和队尾结点指针的结构体 #ifndef __LINK_QUEUE_H__ #define __LINK_QUEUE_H__ #include <stdio.h> #include <stdlib.h>typedef struct link_node{int data…...
十四、计算机视觉-形态学梯度
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、梯度的概念二、梯度的应用三、梯度如何实现 一、梯度的概念 形态学梯度(Morphological Gradient)是数字图像处理中的一种基本操作&…...
3月03日,每日信息差
🎖 素材来源官方媒体/网络新闻 🎄 国产商用飞机C919及ARJ21首次飞抵老挝 🌍 北京将打造新一批智能工厂 🌋 阿里云将于3月29日停止商标代理服务 🎁 起亚在美因远光灯故障召回3.5万辆Telluride汽车 ✨ 天涯社区拟5月1日前…...
leetcode 简单
1. 两数之和 两数之和 方法1:暴力枚举 两次for 循环,记录索引和值,找到合适的值然后返回 方法2:使用哈希表 第一次for循环的时候,就可以使用哈希表记录key的value,可以实现时间复杂度是1,要分…...
服务器硬件基础知识全解析
在信息技术日新月异的今天,服务器作为数据处理和存储的核心,其重要性不言而喻。了解服务器硬件基础知识,对于IT从业者以及广大技术爱好者来说,都是不可或缺的技能。本文将详细解析服务器硬件的基础知识,帮助读者建立起…...
python毕设选题 - 大数据商城人流数据分析与可视化 - python 大数据分析
文章目录 0 前言课题背景分析方法与过程初步分析:总体流程:1.数据探索分析2.数据预处理3.构建模型 总结 最后 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到…...
vmware网络负载均衡方式
基于 IP 哈希的路由: 原理: 基于虚拟机的源和目标 IP 地址以及 TCP/UDP 端口号计算哈希值,并使用该哈希值确定出口网络适配器。这样可以确保同一对源和目标的网络流量始终被路由到相同的网络适配器。应用场景: 适用于大量使用虚拟…...
Docker基础教程 - 2 Docker安装
更好的阅读体验:点这里 ( www.doubibiji.com ) 2 Docker安装 Docker 的官网地址:https://www.docker.com/,在官网可以找到 Docker Engine 的安装步骤。 下面进行 Docker 环境的安装,正常情况下 Docker …...
Android 多桌面图标启动, 爬坑点击打开不同页面
备注 : MainActivity 正常带界面的UI MainActivityBt 和 MainActivityUsb 是透明的,即 android:theme"style/TranslucentTheme" ###场景1:只有MainActivity 设置成:android:launchMode"singleTask" 点击顺序࿱…...
2024-3-1-网络编程作业
1>操控机械臂: 通过w(红色臂角度增大)s(红色臂角度减小) d(蓝色臂角度增大)a(蓝色臂角度减小)按键控制机械臂 源代码: #include <myhead.h> #define minStep 10 //最小偏…...
pytorch基础2-数据集与归一化
专题链接:https://blog.csdn.net/qq_33345365/category_12591348.html 本教程翻译自微软教程:https://learn.microsoft.com/en-us/training/paths/pytorch-fundamentals/ 初次编辑:2024/3/2;最后编辑:2024/3/2 本教程…...
Python测试框架pytest介绍用法
1、介绍 pytest是python的一种单元测试框架,同自带的unittest测试框架类似,相比于unittest框架使用起来更简洁、效率更高 pip install -U pytest 特点: 1.非常容易上手,入门简单,文档丰富,文档中有很多实例可以参考 2.支持简单的单…...
AI对话系统app开源
支持对接gpt,阿里云,腾讯云 具体看截图 后端环境:PHP7.4MySQL5.6 软件:uniapp 废话不多说直接上抗揍云链接: https://mny.lanzout.com/iKFRY1o1zusf 部署教程请看源码内的【使用教程】文档 欢迎各位转载该帖/源码...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
