当前位置: 首页 > news >正文

【海贼王的数据航海:利用数据结构成为数据海洋的霸主】链表—双向链表

目录

往期

1 -> 带头+双向+循环链表(双链表)

1.1 -> 接口声明

1.2 -> 接口实现

1.2.1 -> 双向链表初始化

1.2.2 -> 动态申请一个结点

1.2.3 -> 双向链表销毁

1.2.4 -> 双向链表打印

1.2.5 -> 双向链表判空

1.2.6 -> 双向链表尾插

1.2.7 -> 双向链表尾删

1.2.8 -> 双向链表头插

1.2.9 -> 双向链表头删

1.2.10 -> 双向链表查找

1.2.11 ->  双向链表在pos的前面进行插入

1.2.12 -> 双向链表删除pos位置的节点

2 -> 顺序表和链表的区别

3 -> 完整代码

3.1 -> List.c

3.2 -> List.h

3.3 -> Test.c


往期

链表-单链表

1 -> 带头+双向+循环链表(双链表)

1.1 -> 接口声明

#pragma once#define  _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>// 带头+双向+循环链表增删查改实现
typedef int LTDataType;typedef struct LTNode
{LTDataType data;struct LTNode* next;struct LTNode* prev;
}LTNode;// 双向链表初始化
LTNode* LTInit();// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x);// 双向链表销毁
void LTDestory(LTNode* phead);// 双向链表打印
void LTPrint(LTNode* phead);// 双向链表判空
bool LTEmpty(LTNode* phead);// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x);// 双向链表尾删
void LTPopBack(LTNode* phead);// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x);// 双向链表头删
void LTPopFront(LTNode* phead);// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x);// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x);// 双向链表删除pos位置的节点
void LTErase(LTNode* pos);

1.2 -> 接口实现

1.2.1 -> 双向链表初始化

// 双向链表初始化
LTNode* LTInit()
{LTNode* phead = BuyLTNode(-1);phead->next = phead;phead->prev = phead;return phead;
}

1.2.2 -> 动态申请一个结点

// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x)
{LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));if (newnode == NULL){perror("malloc fail");return NULL;}newnode->data = x;newnode->next = NULL;newnode->prev = NULL;return newnode;
}

1.2.3 -> 双向链表销毁

// 双向链表销毁
void LTDestory(LTNode* phead)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){LTNode* next = cur->next;free(cur);cur = next;}free(phead);
}

1.2.4 -> 双向链表打印

// 双向链表打印
void LTPrint(LTNode* phead)
{assert(phead);printf("guard<==>");LTNode* cur = phead->next;while (cur != phead){printf("%d<==>", cur->data);cur = cur->next;}printf("\n");
}

1.2.5 -> 双向链表判空

// 双向链表判空
bool LTEmpty(LTNode* phead)
{assert(phead);return phead->next == phead;
}

1.2.6 -> 双向链表尾插

// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* tail = phead->prev;LTNode* newnode = BuyLTNode(x);tail->next = newnode;newnode->prev = tail;newnode->next = phead;phead->prev = newnode;// 复用// LTInsert(phead, x);
}
// 尾插测试
void Test1()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}

 

1.2.7 -> 双向链表尾删

// 双向链表尾删
void LTPopBack(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* tail = phead->prev;LTNode* tailPrev = tail->prev;free(tail);tailPrev->next = phead;phead->prev = tailPrev;// 复用// LTErase(phead->prev);
}
// 尾删测试
void Test2()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.8 -> 双向链表头插

// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = BuyLTNode(x);newnode->next = phead->next;phead->next->prev = newnode;phead->next = newnode;newnode->prev = phead;// 复用// LTInsert(phead->next, x);
}
// 头插测试
void Test3()
{LTNode* plist = LTInit();LTPushFront(plist, 1);LTPushFront(plist, 2);LTPushFront(plist, 3);LTPushFront(plist, 4);LTPushFront(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.9 -> 双向链表头删

// 双向链表头删
void LTPopFront(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* first = phead->next;LTNode* second = first->next;phead->next = second;second->prev = phead;free(first);// 复用// LTErase(phead->next);
}
// 头删测试
void Test4()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.10 -> 双向链表查找

// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;}cur = cur->next;}return NULL;
}

1.2.11 ->  双向链表在pos的前面进行插入

// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* prev = pos->prev;LTNode* newnode = BuyLTNode(x);prev->next = newnode;newnode->prev = prev;newnode->next = pos;pos->prev = newnode;
}
// 查找插入测试
void Test5()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTNode* pos = LTFind(plist, 3);if (pos)LTInsert(pos, 99);LTPrint(plist);LTDestory(plist);plist = NULL;
}

1.2.12 -> 双向链表删除pos位置的节点

// 双向链表删除pos位置的节点
void LTErase(LTNode* pos)
{assert(pos);LTNode* posPrev = pos->prev;LTNode* posNext = pos->next;posPrev->next = posNext;posNext->prev = posPrev;free(pos);
}

2 -> 顺序表和链表的区别

不同点顺序表链表
存储空间上物理上一定连续逻辑上连续,但物理上不一定连续
随机访问支持O(1)不支持:O(N)
任意位置插入或者删除元素可能需要搬移元素,效率低O(N)只需修改指针指向
插入动态顺序表,空间不够时需要扩容没有容量的概念
应用场景元素高效存储+频繁访问任意位置插入和删除频繁
缓存利用率

注:缓存利用率参考存储体系结构以及局部原理性。

3 -> 完整代码

3.1 -> List.c

#include "List.h"// 双向链表初始化
LTNode* LTInit()
{LTNode* phead = BuyLTNode(-1);phead->next = phead;phead->prev = phead;return phead;
}// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x)
{LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));if (newnode == NULL){perror("malloc fail");return NULL;}newnode->data = x;newnode->next = NULL;newnode->prev = NULL;return newnode;
}// 双向链表销毁
void LTDestory(LTNode* phead)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){LTNode* next = cur->next;free(cur);cur = next;}free(phead);
}// 双向链表打印
void LTPrint(LTNode* phead)
{assert(phead);printf("guard<==>");LTNode* cur = phead->next;while (cur != phead){printf("%d<==>", cur->data);cur = cur->next;}printf("\n");
}// 双向链表判空
bool LTEmpty(LTNode* phead)
{assert(phead);return phead->next == phead;
}// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* tail = phead->prev;LTNode* newnode = BuyLTNode(x);tail->next = newnode;newnode->prev = tail;newnode->next = phead;phead->prev = newnode;// 复用// LTInsert(phead, x);
}// 双向链表尾删
void LTPopBack(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* tail = phead->prev;LTNode* tailPrev = tail->prev;free(tail);tailPrev->next = phead;phead->prev = tailPrev;// 复用// LTErase(phead->prev);
}// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = BuyLTNode(x);newnode->next = phead->next;phead->next->prev = newnode;phead->next = newnode;newnode->prev = phead;// 复用// LTInsert(phead->next, x);
}// 双向链表头删
void LTPopFront(LTNode* phead)
{assert(phead);assert(!LTEmpty(phead));LTNode* first = phead->next;LTNode* second = first->next;phead->next = second;second->prev = phead;free(first);// 复用// LTErase(phead->next);
}// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x)
{assert(phead);LTNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;}cur = cur->next;}return NULL;
}// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* prev = pos->prev;LTNode* newnode = BuyLTNode(x);prev->next = newnode;newnode->prev = prev;newnode->next = pos;pos->prev = newnode;
}// 双向链表删除pos位置的节点
void LTErase(LTNode* pos)
{assert(pos);LTNode* posPrev = pos->prev;LTNode* posNext = pos->next;posPrev->next = posNext;posNext->prev = posPrev;free(pos);
}

3.2 -> List.h

#pragma once#define  _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>// 带头+双向+循环链表增删查改实现
typedef int LTDataType;typedef struct LTNode
{LTDataType data;struct LTNode* next;struct LTNode* prev;
}LTNode;// 双向链表初始化
LTNode* LTInit();// 动态申请一个结点
LTNode* BuyLTNode(LTDataType x);// 双向链表销毁
void LTDestory(LTNode* phead);// 双向链表打印
void LTPrint(LTNode* phead);// 双向链表判空
bool LTEmpty(LTNode* phead);// 双向链表尾插
void LTPushBack(LTNode* phead, LTDataType x);// 双向链表尾删
void LTPopBack(LTNode* phead);// 双向链表头插
void LTPushFront(LTNode* phead, LTDataType x);// 双向链表头删
void LTPopFront(LTNode* phead);// 双向链表查找
LTNode* LTFind(LTNode* phead, LTDataType x);// 双向链表在pos的前面进行插入
void LTInsert(LTNode* pos, LTDataType x);// 双向链表删除pos位置的节点
void LTErase(LTNode* pos);

3.3 -> Test.c

#include "List.h"// 尾插测试
void Test1()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 尾删测试
void Test2()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 头插测试
void Test3()
{LTNode* plist = LTInit();LTPushFront(plist, 1);LTPushFront(plist, 2);LTPushFront(plist, 3);LTPushFront(plist, 4);LTPushFront(plist, 5);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 头删测试
void Test4()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTDestory(plist);plist = NULL;
}// 查找插入测试
void Test5()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTNode* pos = LTFind(plist, 3);if (pos)LTInsert(pos, 99);LTPrint(plist);LTDestory(plist);plist = NULL;
}int main()
{return 0;
}

感谢大佬们支持!!!

互三啦!!!

相关文章:

【海贼王的数据航海:利用数据结构成为数据海洋的霸主】链表—双向链表

目录 往期 1 -> 带头双向循环链表(双链表) 1.1 -> 接口声明 1.2 -> 接口实现 1.2.1 -> 双向链表初始化 1.2.2 -> 动态申请一个结点 1.2.3 -> 双向链表销毁 1.2.4 -> 双向链表打印 1.2.5 -> 双向链表判空 1.2.6 -> 双向链表尾插 1.2.7 -&…...

做测试还是测试开发,选职业要慎重!

【软件测试面试突击班】2024吃透软件测试面试最全八股文攻略教程&#xff0c;一周学完让你面试通过率提高90%&#xff01;&#xff08;自动化测试&#xff09; 突然发现好像挺多人想投测开和测试的&#xff0c;很多人面试的时候也会被问到这几个职位的区别&#xff0c;然后有测…...

Java面试题总结200道(二)

26、简述Spring中Bean的生命周期&#xff1f; 在原生的java环境中&#xff0c;一个新的对象的产生是我们用new()的方式产生出来的。在Spring的IOC容器中&#xff0c;将这一部分的工作帮我们完成了(Bean对象的管理)。既然是对象&#xff0c;就存在生命周期&#xff0c;也就是作用…...

面试数据库篇(mysql)- 03MYSQL支持的存储引擎有哪些, 有什么区别

存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式 。存储引擎是基于表的&#xff0c;而不是基于库的&#xff0c;所以存储引擎也可被称为表类型。 MySQL体系结构 连接层服务层引擎层存储层 存储引擎特点 InnoDB MYSQL支持的存储引擎有哪些, 有什么区别 ? my…...

MySQL深入——25

Join语句如何优化? Join语句的两种算法&#xff0c;分别为Index Nested-Loop Join和Block Nested-Loop Join NLJ在大表Join当中还不错&#xff0c;但BNL在大表join时性能就差很多&#xff0c;很耗CPU资源。 如何优化这两个算法 创建t1&#xff0c;t2算法&#xff0c;在t1中…...

Docker运行时安全之道: 保障容器环境的安全性

引言 Docker作为容器化技术的领军者,为应用部署提供了灵活性和便捷性。然而,在享受这些优势的同时,必须重视Docker运行时的安全性。本文将深入研究一些关键的Docker运行时安全策略,以确保你的容器环境在生产中得到有效的保护。 1. 使用最小特权原则 保持容器以最小权限运…...

前后端分离项目Docker部署指南(上)

目录 前言 一.搭建局域网 1.搭建net-ry局域网&#xff0c;用于部署若依项目 2.注意点 二.安装redis 创建目录 将容器进行挂载 ​编辑 测试是否安装成功 ​编辑 三. 安装MySQL 创建文件夹 上传配置文件并且修改 .启动MySQL容器服务 充许远程连接 四.部署后端 使用…...

ARM 架构下国密算法库

目录 前言GmSSL编译环境准备下载 GmSSL 源码编译 GmSSL 源码SM4 对称加密算法SM2 非对称加密算法小结前言 在当前的国际形式下,国替势不可挡。操作系统上,银河麒麟、统信 UOS、鸿蒙 OS 等国产系统开始发力,而 CPU 市场,也是百花齐放,有 龙芯(LoongArch架构)、兆芯(X86…...

源码的角度分析Vue2数据双向绑定原理

什么是双向绑定 我们先从单向绑定切入&#xff0c;其实单向绑定非常简单&#xff0c;就是把Model绑定到View&#xff0c;当我们用JavaScript代码更新Model时&#xff0c;View就会自动更新。那么双向绑定就可以从此联想到&#xff0c;即在单向绑定的基础上&#xff0c;用户更新…...

动态规划(算法竞赛、蓝桥杯)--树形DP树形背包

1、B站视频链接&#xff1a;E18 树形DP 树形背包_哔哩哔哩_bilibili #include <bits/stdc.h> using namespace std; const int N110; int n,V,p,root; int v[N],w[N]; int h[N],to[N],ne[N],tot; //邻接表 int f[N][N];void add(int a,int b){to[tot]b;ne[tot]h[a];h[a…...

electron打包前端项目

1.npm run build 打包项目文件到disk文件夹 2.安装electron:npm install electron 打开后进到/dist里面 然后把这个项目的地址配置环境变量 配置环境变量&#xff1a;在系统变量的path中添加进去 配置成功后&#xff0c;electron -v看看版本。 3.创建主程序的入口文件main.…...

2.1基本算法之枚举7647:余数相同问题

已知三个正整数 a&#xff0c;b&#xff0c;c。 现有一个大于1的整数x&#xff0c;将其作为除数分别除a&#xff0c;b&#xff0c;c&#xff0c;得到的余数相同。 请问满足上述条件的x的最小值是多少&#xff1f; 数据保证x有解 #include<bits/stdc.h>//万能头 using…...

求最短路径之迪杰斯特拉算法

对fill用法的介绍 1.用邻接矩阵实现 const int maxn100; const int INF100000000;//无穷大&#xff0c;用来初始化边 int G[maxn][maxn];//用邻接矩阵存储图的信息 int isin[maxn]{false};//记录是否已被访问 int minDis[maxn];//记录到顶点的最小距离void Dijkstra(int s,in…...

python大学社团管理系统开发文档

项目介绍 一直想做一款大学社团管理系统&#xff0c;看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间开始自己写了一套管理系统。 在线体验 代码下载&#xff1a;https://github.com/geeeeeeeek/python_team演示地址&#xff1a;http://team.gitapp.cn/ &…...

leetcode 1328.破坏回文串

题目链接LeetCode1328 1.题目 给你一个由小写英文字母组成的回文字符串 palindrome &#xff0c;请你将其中 一个 字符用任意小写英文字母替换&#xff0c;使得结果字符串的 字典序最小 &#xff0c;且 不是 回文串。 请你返回结果字符串。如果无法做到&#xff0c;则返回一个…...

重学SpringBoot3-自动配置机制

重学SpringBoot3-自动配置机制 引言Spring Boot 自动配置原理示例&#xff1a;Spring Boot Web 自动配置深入理解总结相关阅读 引言 Spring Boot 的自动配置是其最强大的特性之一&#xff0c;它允许开发者通过最少的配置实现应用程序的快速开发和部署。这一切都得益于 Spring …...

sql基本语法+实验实践

sql语法 注释&#xff1a; 单行 --注释内容# 注释内容多行 /* 注释内容 */数据定义语言DDL 查询所有数据库 show databases;注意是databases而不是database。 查询当前数据库 select database();创建数据库 create database [if not exists] 数据库名 [default charset 字符…...

Node.js中的并发和多线程处理

在Node.js中&#xff0c;处理并发和多线程是一个非常重要的话题。由于Node.js是单线程的&#xff0c;这意味着它在任何给定时间内只能执行一个任务。然而&#xff0c;Node.js的事件驱动和非阻塞I/O模型使得处理并发和多线程变得更加高效和简单。在本文中&#xff0c;我们将探讨…...

node.js 封装分页查询

node.js封装sql分页查询 方法&#xff1a; /*** 生成分页查询sql* param {string} table 表名* param {number} pageNum 分页页数 * param {number} pageSize 分页条数 * param {object} query 查询对象 例&#xff1a;{id:1,name:小明}* returns sql语句*/ const limit (ta…...

iptables 基本使用

iptables 主要用到两个表&#xff1a;filter 和 nat&#xff0c;其中 filter 表可以用来过滤数据包&#xff1b;nat 可以用来修改数据包的源地址和目的地址。 chain chain 是 table 中对数据包进行匹配的规则&#xff0c;对于 filter 来说 chain 有 INPUT & OUTPUT & …...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

表单设计器拖拽对象时添加属性

背景&#xff1a;因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...

高保真组件库:开关

一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…...