当前位置: 首页 > news >正文

第二周opencv

一、边缘检测算子

边缘检测算子是用于检测图像中物体边界的工具。边缘通常表示图像中灰度值或颜色发生显著变化的地方。边缘检测有助于识别图像中的物体形状、轮廓和结构。这些算子通过分析图像的灰度或颜色梯度来确定图像中的边缘。

梯度算子

要得到一幅图像的梯度,则要求在图像的每个像素点位置处计算偏导数。 一阶微分算子能够检测图像中的亮度变化,因此在边缘位置通常有较大的梯度值。通过检测梯度的变化,可以找到图像中的边缘。
在这里插入图片描述
对应的卷积模板
在这里插入图片描述

1、Roberts 算子

原理: 基于交叉差分的梯度算法,通过局部差分计算检测边缘线
在这里插入图片描述

通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。

import cv2
import numpy as np
import matplotlib.pyplot as pltimage = cv2.imread("../images/1.png", cv2.IMREAD_GRAYSCALE)
# 1.定义 Roberts 算子的卷积核
roberts_x = np.array([[1, 0], [0, -1]], dtype=np.float32)
roberts_y = np.array([[0, 1], [-1, 0]], dtype=np.float32)
# 2.二维卷积操作
# 使用 filter2D 函数应用 Roberts 算子卷积核
gradient_x = cv2.filter2D(image, cv2.CV_64F, roberts_x)
gradient_y = cv2.filter2D(image, cv2.CV_64F, roberts_y)# 3.计算梯度幅值
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)# 转换结果为8位图像
gradient_magnitude = np.uint8(gradient_magnitude)# 显示原图、Roberts算子的结果和应用结果
plt.subplot(1, 4, 1)
plt.imshow(image, cmap='gray')
plt.title("Original Image")
plt.axis("off")plt.subplot(1, 4, 2)
plt.imshow(gradient_x, cmap='gray')
plt.title("Roberts X")
plt.axis("off")plt.subplot(1, 4, 3)
plt.imshow(gradient_y, cmap='gray')
plt.title("Roberts Y")
plt.axis("off")plt.subplot(1, 4, 4)
plt.imshow(gradient_magnitude, cmap='gray')
plt.title("Magnitude")
plt.axis("off")plt.show()

在这里插入图片描述

2、Prewitt 算子

Prewitt算子使用中心差分法计算梯度
在这里插入图片描述
相比Roberts 2×2 模板考虑更多的相邻像素,更好地捕捉到图像中的局部变化

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread("../images/1.png", cv2.IMREAD_GRAYSCALE)# 1.使用Prewitt算子
kernelx = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]], dtype=int)
kernely = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]], dtype=int)
# 2.卷积
gradient_x = cv2.filter2D(img, cv2.CV_64F, kernelx)
gradient_y = cv2.filter2D(img, cv2.CV_64F, kernely)
# 3
# 计算梯度幅值
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)# 转换结果为8位图像
gradient_magnitude = np.uint8(gradient_magnitude)# 显示原图、水平梯度、垂直梯度、Prewitt算子的结果
plt.subplot(141), plt.imshow(img, cmap='gray'), plt.title('Original Image'), plt.axis('off')
plt.subplot(142), plt.imshow(gradient_x, cmap='gray'), plt.title('X'), plt.axis('off')
plt.subplot(143), plt.imshow(gradient_y, cmap='gray'), plt.title('Y'), plt.axis('off')
plt.subplot(144), plt.imshow(gradient_magnitude, cmap='gray'), plt.title('Prewitt Operator'), plt.axis('off')
plt.show()

在这里插入图片描述

3、Laplace

拉普拉斯算子 Laplacian算子是基于二阶导数的边缘检测算子。二阶微分算子主要用于检测图像中的灰度变化的变化率,或者说是梯度的变化率。在边缘处,梯度的变化率最大,因此二阶微分算子会在边缘位置产生较大的响应。在这里插入图片描述在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread('../images/1.png', cv2.IMREAD_GRAYSCALE)# 使用拉普拉斯算子
laplacian = cv2.Laplacian(img, cv2.CV_64F)# 转换结果为8位图像
laplacian = np.uint8(np.absolute(laplacian))# 显示原图和拉普拉斯算子的结果
plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Original Image'), plt.axis('off')
plt.subplot(122), plt.imshow(laplacian, cmap='gray'), plt.title('Laplacian Operator'), plt.axis('off')
plt.show()

在这里插入图片描述

4、Canny算子

Canny基本步骤:
1.去噪:应用高斯滤波来平滑图像
2.找图像的梯度,先将卷积模板分别作用x和y方向,再计算梯度幅值和方向(在这里插入图片描述

3.非极大值抑制:保留梯度方向上的局部极大值,细化边缘
4.确定边缘。使用双阈值算法确定最终的边缘信息
在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('../images/1.png', cv2.IMREAD_GRAYSCALE)
# 高斯滤波降噪
gaussian = cv2.GaussianBlur(image, (5, 5), 0)
# 使用Canny算子进行边缘检测
edges = cv2.Canny(gaussian, 50, 150)  # 50和150是Canny算子的两个阈值,可调整# 显示原始图像和边缘检测结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(edges, cmap='gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

5、四种算子的比较

在这里插入图片描述

在这里插入图片描述

二、角点检测

在角上 不管你把它朝哪个方向移动,像素值都会发生很大变化。

## 1.

1.Moravec

在这里插入图片描述
注:权重函数在这里插入图片描述当像素位置 (x,y) 位于滑动窗口内时,权重函数为1,否则为0。

E(u,v)越大 越可能是角点

2.harris

在Moravec 基础上 泰勒展开
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
角点响应函数R在这里插入图片描述在这里插入图片描述在这里插入图片描述

3.Shi-Tomasi

Shi-Tomasi 角点检测改进了Harris角点检测算法的R响应函数,R响应函数更加简单高效。在这里插入图片描述

相关文章:

第二周opencv

一、边缘检测算子 边缘检测算子是用于检测图像中物体边界的工具。边缘通常表示图像中灰度值或颜色发生显著变化的地方。边缘检测有助于识别图像中的物体形状、轮廓和结构。这些算子通过分析图像的灰度或颜色梯度来确定图像中的边缘。 梯度算子 要得到一幅图像的梯度&#xff0c…...

python_读取txt文件绘制多条曲线II

从给定的列表中来匹配txt文件对应列的数据; import matplotlib.pyplot as plt import re from datetime import datetime from pylab import mplmpl.rcParams["font.sans-serif"] ["SimHei"] # 设置显示中文字体 mpl.rcParams["axes.un…...

java排序简单总结和推荐使用套路(数据排序,结构体排序)

了解int和Integer的区别 int是Java的基本数据类型,用于表示整数值。Integer是int的包装类,它是一个对象,可以包含一个int值并提供一些额外的功能。 Java集合框架中的集合类(如List、Set、Map)只能存储对象,…...

掘根宝典之C语言联合和枚举

联合 C语言中的联合(Union)是一种特殊的数据类型,它允许在同一块内存空间中存储不同类型的数据。 联合与结构体类似,但不同的是,在给联合变量赋值时,它只能存储最后一次赋值的值。 创建联合 在C语言中&…...

【debug】element-ui时间控件回显后不可编辑且显示为空

问题&#xff1a;使用element-ui的时间控件回显数据&#xff0c;编辑数据没有反应&#xff1a;点时间和“确认”按钮都没反应。 输入框中会显示数据&#xff0c;但提交时的校验显示为空。 <el-form-item label"开始时间" prop"limitStartTime"><…...

【Linux从青铜到王者】进程信号

——————————————————————————————————————————— 信号入门 在了解信号之前有许多要理解的相关概念 我们可以先通过一个生活例子来初步认识一下信号 1.生活角度的信号 你在网上买了很多件商品&#xff0c;再等待不同商品快递的到来…...

MyBatis-Plus 快速入门

介绍 j​​​​​MyBatis-Plus (opens new window)&#xff08;简称 MP&#xff09;是一个 MyBatis (opens new window)的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 官网&#xff1a;MyBatis-Plus (baomidou.com) 1.…...

iOS调起高德/百度/腾讯/谷歌/苹果地图并使用GCJ02坐标进行导航

使用演示: 2.地图API相关网站 : 高德:...

HarmonyOS Full SDK的安装

OpenHarmony的应用开发工具HUAWEI DevEco Studio现在随着OpenHarmony版本发布而发布,只能在版本发布说明中下载,例如最新版本的OpenHarmony 4.0 Release。对应的需要下载DevEco Studio 4.0 Release,如下图。 图片 下载Full SDK主要有两种方式,一种是通过DevEco Studio下载…...

小程序嵌套H5-真机突然无法使用

今天测试反馈了一个问题&#xff0c;测试环境的小程序突然就登录不了了。我自己拿手机扫码登录是正常的&#xff0c;用其他同事的手机扫描登录也是正常。 下面是排查的路线&#xff1a; 1、其他环境使用测试手机扫码登录是否正常&#xff1f;(正常) 2、H5地址改为本地IP&#…...

自然语言处理 | 语言模型(LM) 浅析

自然语言处理&#xff08;NLP&#xff09;中的语言模型&#xff08;Language Model, LM&#xff09;是一种统计模型&#xff0c;它的目标是计算一个给定文本序列的概率分布&#xff0c;即对于任意给定的一段文本序列&#xff08;单词序列&#xff09;&#xff0c;语言模型能够估…...

全量知识系统问题及SmartChat给出的答复 之13 解析器+DDD+文法型

Q32. DDD的领域概念和知识系统中设计的解析器之间的关系。 那下面&#xff0c;我们回到前面的问题上来。 前面说到了三种语法解析器&#xff0c;分别是 形式语言的&#xff08;机器或计算机语言&#xff09;、人工语言的和自然语言的。再前面&#xff0c;我们聊到了DDD设计思…...

华中某科技大学校园网疑似dns劫持的解决方法

问题 在校园网ping xxx.ddns.net&#xff0c;域名解析失败 使用热点ping xxx.ddns.net&#xff0c;可以ping通 尝试设置windows dns首选dns为114.114.114.114&#xff0c;重新ping&#xff0c;仍然域名解析失败 猜测【校园网可能劫持dns请求】 解决方法 使用加密的dns请求…...

模型部署 - onnx 的导出和分析 -(1) - PyTorch 导出 ONNX - 学习记录

onnx 的导出和分析 一、PyTorch 导出 ONNX 的方法1.1、一个简单的例子 -- 将线性模型转成 onnx1.2、导出多个输出头的模型1.3、导出含有动态维度的模型 二、pytorch 导出 onnx 不成功的时候如何解决2.1、修改 opset 的版本2.2、替换 pytorch 中的算子组合2.3、在 pytorch 登记&…...

【鸿蒙 HarmonyOS 4.0】多设备响应式布局

一、背景 在渲染页面时&#xff0c;需要根据不同屏幕大小渲染出不同的效果&#xff0c;动态的判断设备屏幕大小&#xff0c;便需要采用多设备响应式布局。这种设计方法能够动态适配各种屏幕大小&#xff0c;确保网站在不同设备上都能呈现出最佳的效果。 二、媒体查询&#xf…...

Android ANR 日志分析定位

ANR 是 Android 应用程序中的 "Application Not Responding" 的缩写&#xff0c;中文意思是 "应用程序无响应"。这是当应用程序在 Android 系统上运行时&#xff0c;由于某种原因不能及时响应用户输入事件或执行一个操作&#xff0c;导致界面无法更新&…...

Optional 详解

Optional 详解 1、Optional 介绍2、创建 Optional 对象3、Optional 常用方法1. 判断值是否存在 — isPresent()2. 非空表达式 — ifPresent()3. 设置(获取)默认值 — orElse()、orElseGet()4. 获取值 — get()5. 过滤值 — filter()6. 转换值 — map() 作为一名 Java 程序员&am…...

(科目三)数据库基础知识

1、基本概念 1.1 数据库 1、数据、信息和数据处理 数据是指表达信息的某种物理符号&#xff1b; 信息是对客观事物的反映&#xff0c;是为某一特定目的二提供的决策数据&#xff1b; 数据处理是指将数据转换成信息的过程&#xff0c;是对各类型的数据进行收集、整理、存储、…...

Unity性能优化篇(十) 模型优化之网格合并 Easy Mesh Combine Tool插件使用以及代码实现网格合并

把多个模型的网格合并为一个网格。可以使用自己写代码&#xff0c;使用Unity自带的CombineMeshes方法&#xff0c;也可以使用资源商店的插件&#xff0c;在资源商店搜Mesh Combine可以搜索到相关的插件&#xff0c;例如Easy Mesh Combine Tool等插件。 可大幅度减少Batches数量…...

0.8秒一张图40hx矿卡stable diffusion webui 高质极速出图组合(24.3.3)

新消息是。经过三个月的等待&#xff0c;SD Webui (automatic1111)终于推出了新版本1.8.0&#xff0c;本次版本最大的更新&#xff0c;可能就是pytorch更新到2.1.2, 不过还是晚了pytorch 2.2.2版。 不过这版的一些更新&#xff0c;在forget分支上早就实现了&#xff0c;所以。…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...