李沐动手学习深度学习——4.2练习
1. 在所有其他参数保持不变的情况下,更改超参数num_hiddens的值,并查看此超参数的变化对结果有何影响。确定此超参数的最佳值。
通过改变隐藏层的数量,导致就是函数拟合复杂度下降,隐藏层过多可能导致过拟合,而过少导致欠拟合。
我们将层数改为128可得:
2. 尝试添加更多的隐藏层,并查看它对结果有何影响。
过拟合,导致测试机精确度下降。
3. 改变学习速率会如何影响结果?保持模型架构和其他超参数(包括轮数)不变,学习率设置为多少会带来最好的结果?
过高的学习率导致,梯度跨度过大,使得降低不到对应的驻点。
过低的学习率导致训练缓慢,需要增加epoch。
在训练轮数不变的情况下,我们可以通过for 设置不同的学习率找出最合适的学习率。一般来说设置为0.01或者0.1足以
4. 通过对所有超参数(学习率、轮数、隐藏层数、每层的隐藏单元数)进行联合优化,可以得到的最佳结果是什么?
跑了一次学习率lr=0.01的情况:
需要大量的训练,但是目前我训练结果是学习率lr=0.1、轮数是num_epochs=10,隐藏层数为1,隐藏层数单元num_hiddens=128。
5. 描述为什么涉及多个超参数更具挑战性。
因为组合的情况更多,当层数越多时,训练时间也更多,这玩意就是炼丹了,看你自己的GPU还有时间、运气。
6. 如果想要构建多个超参数的搜索方法,请想出一个聪明的策略。
套用for 循环暴力破解,时间上肯定慢的要死,我们可以先固定其他变量,挑选一个变量寻找最优解,以此类推对所有的超参数这样使用,但是这种做法肯定不是最优的,只是能够较好的找出比较好的超参数。
由于学校穷逼所以没有闲置GPU服务器,所有的模型只能在colab上进行运行,其中遇到了d2l的版本对应问题,所以对于d2l.train_ch3跑不起来,只能使用自写进行替代如下:
import torch.nn
from d2l import torch as d2l
from IPython import displayclass Accumulator:"""在n个变量上累加"""def __init__(self, n):self.data = [0.0] * n # 创建一个长度为 n 的列表,初始化所有元素为0.0。def add(self, *args): # 累加self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self): # 重置累加器的状态,将所有元素重置为0.0self.data = [0.0] * len(self.data)def __getitem__(self, idx): # 获取所有数据return self.data[idx]def accuracy(y_hat, y):"""计算正确的数量:param y_hat::param y::return:"""if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:y_hat = y_hat.argmax(axis=1) # 在每行中找到最大值的索引,以确定每个样本的预测类别cmp = y_hat.type(y.dtype) == yreturn float(cmp.type(y.dtype).sum())def evaluate_accuracy(net, data_iter):"""计算指定数据集的精度:param net::param data_iter::return:"""if isinstance(net, torch.nn.Module):net.eval() # 通常会关闭一些在训练时启用的行为metric = Accumulator(2)with torch.no_grad():for X, y in data_iter:metric.add(accuracy(net(X), y), y.numel())return metric[0] / metric[1]class Animator:"""在动画中绘制数据"""def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):# 增量的绘制多条线if legend is None:legend = []d2l.use_svg_display()self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes, ]# 使用lambda函数捕获参数self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmtsdef add(self, x, y):"""向图表中添加多个数据点:param x::param y::return:"""if not hasattr(y, "__len__"):y = [y]n = len(y)if not hasattr(x, "__len__"):x = [x] * nif not self.X:self.X = [[] for _ in range(n)]if not self.Y:self.Y = [[] for _ in range(n)]for i, (a, b) in enumerate(zip(x, y)):if a is not None and b is not None:self.X[i].append(a)self.Y[i].append(b)self.axes[0].cla()for x, y, fmt in zip(self.X, self.Y, self.fmts):self.axes[0].plot(x, y, fmt)self.config_axes()display.display(self.fig)display.clear_output(wait=True)def train_epoch_ch3(net, train_iter, loss, updater):"""训练模型一轮:param net:是要训练的神经网络模型:param train_iter:是训练数据的数据迭代器,用于遍历训练数据集:param loss:是用于计算损失的损失函数:param updater:是用于更新模型参数的优化器:return:"""if isinstance(net, torch.nn.Module): # 用于检查一个对象是否属于指定的类(或类的子类)或数据类型。net.train()# 训练损失总和, 训练准确总和, 样本数metric = Accumulator(3)for X, y in train_iter: # 计算梯度并更新参数y_hat = net(X)l = loss(y_hat, y)if isinstance(updater, torch.optim.Optimizer): # 用于检查一个对象是否属于指定的类(或类的子类)或数据类型。# 使用pytorch内置的优化器和损失函数updater.zero_grad()l.mean().backward() # 方法用于计算损失的平均值updater.step()else:# 使用定制(自定义)的优化器和损失函数l.sum().backward()updater(X.shape())metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())# 返回训练损失和训练精度return metric[0] / metric[2], metric[1] / metric[2]def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):"""训练模型():param net::param train_iter::param test_iter::param loss::param num_epochs::param updater::return:"""animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):trans_metrics = train_epoch_ch3(net, train_iter, loss, updater)test_acc = evaluate_accuracy(net, test_iter)animator.add(epoch + 1, trans_metrics + (test_acc,))train_loss, train_acc = trans_metricsprint(trans_metrics)def predict_ch3(net, test_iter, n=6):"""进行预测:param net::param test_iter::param n::return:"""global X, yfor X, y in test_iter:breaktrues = d2l.get_fashion_mnist_labels(y)preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))titles = [true + "\n" + pred for true, pred in zip(trues, preds)]d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])d2l.plt.show()
相关文章:

李沐动手学习深度学习——4.2练习
1. 在所有其他参数保持不变的情况下,更改超参数num_hiddens的值,并查看此超参数的变化对结果有何影响。确定此超参数的最佳值。 通过改变隐藏层的数量,导致就是函数拟合复杂度下降,隐藏层过多可能导致过拟合,而过少导…...

CYQ.Data 支持 DaMeng 达梦数据库
DaMeng 达梦数据库介绍: 达梦数据库(DMDB)是中国自主研发的关系型数据库管理系统,由达梦科技股份有限公司开发。 达梦数据库提供了企业级的数据库解决方案,广泛应用于金融、电信、政府、制造等行业领域。 达梦数据库具有以下特点和优势: 高性能:具备高性能的并发处理…...

计网面试题整理上
1. 计算机网络的各层协议及作用? 计算机网络体系可以大致分为一下三种,OSI七层模型、TCP/IP四层模型和五层模型。 OSI七层模型:大而全,但是比较复杂、而且是先有了理论模型,没有实际应用。TCP/IP四层模型:…...

code: 500 ] This subject is anonymous - it does not have any identifying
项目场景: 相关背景: 使用idea 开发java 项目,前端页面请求 页面中相关的接口时,idea 控制台有报错信息出现,前端请求失败。 问题描述 问题: 使用idea 开发java 项目,前端页面请求 页面中相…...

FC-AE-1553 协议
FC-AE-1553 协议 MIL-STD-1553B总线协议总线结构字格式消息传输方式 FC协议FC协议栈拓扑结构服务类型帧/序列/交换FC帧格式 FC-AE-1553网络构成帧类型命令帧状态帧数据帧 Information UnitsNC1NC2NC3-4NC5-7NT1-7 传输模式1. NC-NT2. NT-NC3. NT-NT4. 无数据字的模式命令5. 带数…...

代码随想录算法训练营day38|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
理论基础 代码随想录 视频:从此再也不怕动态规划了,动态规划解题方法论大曝光 !| 理论基础 |力扣刷题总结| 动态规划入门_哔哩哔哩_bilibili 动态规划:如果某一问题有很多重叠子问题,使用动态规划是最有效的。所以动态…...

夫妻一方名下股权到底归谁?
生效判决摘要:1.夫妻一方在婚姻关系存续期间投资的收益,为夫妻的共同财产,归夫妻共同所有,但是并不能据此否定股权本身可能成为夫妻共同财产。婚姻关系存续期间登记在配偶一方名下的股权能否成为夫妻共同财产,可由司法…...

git根据文件改动将文件自动添加到缓冲区
你需要修改以下脚本中的 use_cca: false 部分 #!/bin/bash# 获取所有已修改但未暂存的文件 files$(git diff --name-only)for file in $files; do# 检查文件中是否存在"use_cca: false"if grep -q "use_cca: false" "$file"; thenecho "Ad…...

SystemVerilog Constants、Processes
SystemVerilog提供了三种类型的精化时间常数: •参数:与最初的Verilog标准相同,可以以相同的方式使用。 •localparameter:与参数类似,但不能被上层覆盖模块。 •specparam:用于指定延迟和定时值&#x…...

交易平台开发:构建安全/高效/用户友好的在线交易生态圈
在数字化浪潮的推动下,农产品现货大宗商品撮合交易平台已成为连接全球买家与卖家的核心枢纽。随着电子商务的飞速发展,一个安全、高效、用户友好的交易平台对于促进交易、提升用户体验和增加用户黏性至关重要。本文将深入探讨交易平台开发的关键要素&…...

Linux系统之部署复古游戏平台
Linux系统之部署复古游戏平台 前言一、项目介绍1.1 项目简介1.2 项目特点1.3 游戏平台介绍二、本次实践介绍二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍三、本地环境检查3.1 安装Docker环境3.2 检查Docker服务状态3.3 检查Docker版本3.4 检查docker compose 版本四、构建…...

开源计算机视觉库opencv-python详解
开源计算机视觉库opencv-python详解 OpenCV-Python的核心功能:安装OpenCV-Python:使用OpenCV-Python的基本步骤:OpenCV-Python的高级应用:注意事项:OpenCV-Python的高级应用示例:1. 人脸识别2. 目标跟踪3. …...

Vue开发实例(十)Tabs标签页打开、关闭与路由之间的关系
创建标签页 一、创建标签页二、点击菜单展示新标签页1、将标签数据作为全局使用2、菜单点击增加标签页3、处理重复标签4、关闭标签页 三、点击标签页操作问题1:点击标签页选中菜单进行高亮展示问题2:点击标签页路由也要跳转 四、解决bug 先展示最终效果 …...

基于51单片机的智能火灾报警系统
基于51单片机的智能火灾报警系统 摘要: 本文提出了一种基于51单片机的智能火灾报警系统。该系统采用烟雾传感器和温度传感器来检测火灾的发生,并通过单片机进行数据处理和报警控制。此外,该系统还具有无线通信功能,可以实时将火灾…...

【数据结构】堆的TopK问题
大家好,我是苏貝,本篇博客带大家了解堆的TopK问题,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 一. 前言二. TopK三. 代码 一. 前言 TOP-K问题:即求数据结合中前K个最大的元…...

Vue后台管理系统笔记-01
npm(Node Package Manager)和 yarn 是两个常用的包管理工具,用于在 Node.js 项目中安装、管理和更新依赖项。它们有以下几个区别: 性能和速度:在包的安装和下载方面,yarn 通常比 npm 更快速。yarn 使用了并…...

飞天使-学以致用-devops知识点3-安装jenkins
文章目录 构建带maven环境的jenkins 镜像安装jenkinsjenkins yaml 文件安装插件jenkins 配置k8s创建用户凭证 构建带maven环境的jenkins 镜像 # 构建带 maven 环境的 jenkins 镜像 docker build -t 192.168.113.122:8858/library/jenkins-maven:jdk-11 .# 登录 harbor docker …...

08、MongoDB -- MongoDB 的 集合关联($lookup 和 DBRef 实现集合关联)
目录 MongoDB 的 集合关联演示前提:登录单机模式的 mongodb 服务器命令登录【test】数据库的 mongodb 客户端命令登录【admin】数据库的 mongodb 客户端命令 SQL 术语 与 Mongodb 的对应关系使用 $lookup 实现集合关联语法格式添加测试数据1、查询出订单数量大于6&a…...

前方高能,又一波Smartbi签约喜报来袭
近期,交通银行、厦门国际银行、中原农业保险、江苏中天科技等多家知名企业签约Smartbi,携手Smartbi实现数据驱动业务新增长。 Smartbi数10年专注于商业智能BI与大数据分析软件与服务,为各行各业提供提供一站式商业智能平台(PaaS&a…...

蓝桥杯倒计时 41天 - 二分答案-最大通过数-妮妮的月饼工厂
最大通过数 思路:假设左边能通过 x 关,右边能通过 y 关,x∈[0,n],通过二分,在前缀和中枚举右边通过的关卡数,保存 xy 的最大值。 #include<bits/stdc.h> using namespace std; typedef long long ll…...

【JavaSE】泛型
系列文章目录 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 前言 学习泛型之前请大家先详细地了解一下,关于Java…...

APS(高级计划与调度系统)难度超高,ERP在它面前就是弟弟。
一、APS定义和功能模块 APS系统是Advanced Planning and Scheduling System(高级计划与调度系统)的缩写。它是一种计划和调度管理软件系统,旨在帮助企业优化生产计划和资源调度,提高生产效率和响应能力。 APS系统利用先进的算法和…...

ArmV8架构
Armv8/armv9架构入门指南 — Armv8/armv9架构入门指南 v1.0 documentation 上面只是给了一个比较好的参考文档 其他内容待补充...

[论文笔记] Open-sora 2、视频数据集介绍 MSR-VTT
MSR-VTT COVE - Computer Vision Exchange 论文参考:https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/cvpr16.msr-vtt.tmei_-1.pdf 用于视频理解的大规模视频基准,特别是将视频翻译为文本的新兴任务。这是通过从商业视频搜索引擎收集 257 个热门查询…...

【Windows 常用工具系列 14 -- windows 网络驱动映射】
文章目录 windows 网络驱动映射 windows 网络驱动映射 映射网络驱动器的意思是将局域网中的某个目录映射成本地驱动器号。 在windows上将服务器目录映射到本地盘: 进入到服务器执行下面命令既可以看到对应的 IP地址: 将对应的IP地址填入上图中。 映…...

Java中使用Jsoup实现网页内容爬取与Html内容解析并使用EasyExcel实现导出为Excel文件
场景 Pythont通过request以及BeautifulSoup爬取几千条情话: Pythont通过request以及BeautifulSoup爬取几千条情话_爬取情话-CSDN博客 Node-RED中使用html节点爬取HTML网页资料之爬取Node-RED的最新版本: Node-RED中使用html节点爬取HTML网页资料之爬…...

闫震海:腾讯音乐空间音频技术的发展和应用 | 演讲嘉宾公布
一、3D 音频 3D 音频分论坛将于3月27日同期举办! 3D音频技术不仅能够提供更加真实、沉浸的虚拟世界体验,跨越时空的限制,探索未知的世界。同时,提供更加丰富、立体的情感表达和交流方式,让人类能够更加深入地理解彼此&…...

Java基础 - 6 - 面向对象(二)
Java基础 - 6 - 面向对象(一)-CSDN博客 二. 面向对象高级 2.1 static static叫做静态,可以修饰成员变量、成员方法 2.1.1 static修饰成员变量 成员变量按照有无static修饰,分为两种:类变量、实例变量(对象…...

SpringCloud-MQ消息队列
一、消息队列介绍 MQ (MessageQueue) ,中文是消息队列,字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。消息队列是一种基于生产者-消费者模型的通信方式,通过在消息队列中存放和传递消息,实现了不同组件、服务或系统…...

代码随想录算法训练营第三十八天|509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
509. 斐波那契数 刷题https://leetcode.cn/problems/fibonacci-number/description/文章讲解https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE视频讲解https://www.bilibili.com/video/BV…...