并发包中的ConcurrentLinkedQueue和LinkedBlockingQueue有什么区别?
第20讲 | 并发包中的ConcurrentLinkedQueue和LinkedBlockingQueue有什么区别?

在上一讲中,我分析了 Java 并发包中的部分内容,今天我来介绍一下线程安全队列。Java 标准库提供了非常多的线程安全队列,很容易混淆。
今天我要问你的问题是,并发包中的 ConcurrentLinkedQueue 和 LinkedBlockingQueue 有什么区别?
典型回答
有时候我们把并发包下面的所有容器都习惯叫作并发容器,但是严格来讲,类似 ConcurrentLinkedQueue 这种“Concurrent*”容器,才是真正代表并发。
关于问题中它们的区别:
Concurrent 类型基于 lock-free,在常见的多线程访问场景,一般可以提供较高吞吐量
而 LinkedBlockingQueue 内部则是基于锁,并提供了 BlockingQueue 的等待性方法。
不知道你有没有注意到,java.util.concurrent 包提供的容器(Queue、List、Set)、Map,从命名上可以大概区分为 Concurrent*、CopyOnWrite和 Blocking等三类,同样是线程安全容器,可以简单认为:
Concurrent 类型没有类似 CopyOnWrite 之类容器相对较重的修改开销。
但是,凡事都是有代价的,Concurrent 往往提供了较低的遍历一致性。你可以这样理解所谓的弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行遍历。
与弱一致性对应的,就是我介绍过的同步容器常见的行为“fail-fast”,也就是检测到容器在遍历过程中发生了修改,则抛出 ConcurrentModificationException,不再继续遍历。
弱一致性的另外一个体现是,size 等操作准确性是有限的,未必是 100% 准确。
与此同时,读取的性能具有一定的不确定性。
考点分析
今天的问题是又是一个引子,考察你是否了解并发包内部不同容器实现的设计目的和实现区别。
队列是非常重要的数据结构,我们日常开发中很多线程间数据传递都要依赖于它,Executor 框架提供的各种线程池,同样无法离开队列。面试官可以从不同角度考察,比如:
哪些队列是有界的,哪些是无界的?(很多同学反馈了这个问题)
针对特定场景需求,如何选择合适的队列实现?
从源码的角度,常见的线程安全队列是如何实现的,并进行了哪些改进以提高性能表现?
为了能更好地理解这一讲,需要你掌握一些基本的队列本身和数据结构方面知识,如果这方面知识比较薄弱,《数据结构与算法分析》是一本比较全面的参考书,专栏还是尽量专注于 Java 领域的特性。
知识扩展
线程安全队列一览
我在专栏第 8 讲中介绍过,常见的集合中如 LinkedList 是个 Deque,只不过不是线程安全的。下面这张图是 Java 并发类库提供的各种各样的线程安全队列实现,注意,图中并未将非线程安全部分包含进来。

我们可以从不同的角度进行分类,从基本的数据结构的角度分析,有两个特别的Deque实现,ConcurrentLinkedDeque 和 LinkedBlockingDeque。Deque 的侧重点是支持对队列头尾都进行插入和删除,所以提供了特定的方法,如:
尾部插入时需要的addLast(e)、offerLast(e)。
尾部删除所需要的removeLast()、pollLast()。
从上面这些角度,能够理解 ConcurrentLinkedDeque 和 LinkedBlockingQueue 的主要功能区别,也就足够日常开发的需要了。但是如果我们深入一些,通常会更加关注下面这些方面。
从行为特征来看,绝大部分 Queue 都是实现了 BlockingQueue 接口。在常规队列操作基础上,Blocking 意味着其提供了特定的等待性操作,获取时(take)等待元素进队,或者插入时(put)等待队列出现空位。
/*** 获取并移除队列头结点,如果必要,其会等待直到队列出现元素
…*/
E take() throws InterruptedException;/*** 插入元素,如果队列已满,则等待直到队列出现空闲空间…*/
void put(E e) throws InterruptedException;
另一个 BlockingQueue 经常被考察的点,就是是否有界(Bounded、Unbounded),这一点也往往会影响我们在应用开发中的选择,我这里简单总结一下。
ArrayBlockingQueue 是最典型的的有界队列,其内部以 final 的数组保存数据,数组的大小就决定了队列的边界,所以我们在创建 ArrayBlockingQueue 时,都要指定容量,如
public ArrayBlockingQueue(int capacity, boolean fair)
LinkedBlockingQueue,容易被误解为无边界,但其实其行为和内部代码都是基于有界的逻辑实现的,只不过如果我们没有在创建队列时就指定容量,那么其容量限制就自动被设置为 Integer.MAX_VALUE,成为了无界队列。
SynchronousQueue,这是一个非常奇葩的队列实现,每个删除操作都要等待插入操作,反之每个插入操作也都要等待删除动作。那么这个队列的容量是多少呢?是 1 吗?其实不是的,其内部容量是 0。
PriorityBlockingQueue 是无边界的优先队列,虽然严格意义上来讲,其大小总归是要受系统资源影响。
DelayedQueue 和 LinkedTransferQueue 同样是无边界的队列。对于无边界的队列,有一个自然的结果,就是 put 操作永远也不会发生其他 BlockingQueue 的那种等待情况
如果我们分析不同队列的底层实现,BlockingQueue 基本都是基于锁实现,一起来看看典型的 LinkedBlockingQueue。
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();
我在介绍 ReentrantLock 的条件变量用法的时候分析过 ArrayBlockingQueue,不知道你有没有注意到,其条件变量与 LinkedBlockingQueue 版本的实现是有区别的。notEmpty、notFull 都是同一个再入锁的条件变量,而 LinkedBlockingQueue 则改进了锁操作的粒度,头、尾操作使用不同的锁,所以在通用场景下,它的吞吐量相对要更好一些。
下面的 take 方法与 ArrayBlockingQueue 中的实现,也是有不同的,由于其内部结构是链表,需要自己维护元素数量值,请参考下面的代码。
public E take() throws InterruptedException {final E x;final int c;final AtomicInteger count = this.count;final ReentrantLock takeLock = this.takeLock;takeLock.lockInterruptibly();try {while (count.get() == 0) {notEmpty.await();}x = dequeue();c = count.getAndDecrement();if (c > 1)notEmpty.signal();} finally {takeLock.unlock();}if (c == capacity)signalNotFull();return x;
}
类似 ConcurrentLinkedQueue 等,则是基于 CAS 的无锁技术,不需要在每个操作时使用锁,所以扩展性表现要更加优异。
相对比较另类的 SynchronousQueue,在 Java 6 中,其实现发生了非常大的变化,利用 CAS 替换掉了原本基于锁的逻辑,同步开销比较小。它是 Executors.newCachedThreadPool() 的默认队列。
队列使用场景与典型用例
在实际开发中,我提到过 Queue 被广泛使用在生产者 - 消费者场景,比如利用 BlockingQueue 来实现,由于其提供的等待机制,我们可以少操心很多协调工作,你可以参考下面样例代码:
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;public class ConsumerProducer {public static final String EXIT_MSG = "Good bye!";public static void main(String[] args) {
// 使用较小的队列,以更好地在输出中展示其影响BlockingQueue<String> queue = new ArrayBlockingQueue<>(3);Producer producer = new Producer(queue);Consumer consumer = new Consumer(queue);new Thread(producer).start();new Thread(consumer).start();}static class Producer implements Runnable {private BlockingQueue<String> queue;public Producer(BlockingQueue<String> q) {this.queue = q;}@Overridepublic void run() {for (int i = 0; i < 20; i++) {try{Thread.sleep(5L);String msg = "Message" + i;System.out.println("Produced new item: " + msg);queue.put(msg);} catch (InterruptedException e) {e.printStackTrace();}}try {System.out.println("Time to say good bye!");queue.put(EXIT_MSG);} catch (InterruptedException e) {e.printStackTrace();}}}static class Consumer implements Runnable{private BlockingQueue<String> queue;public Consumer(BlockingQueue<String> q){this.queue=q;}@Overridepublic void run() {try{String msg;while(!EXIT_MSG.equalsIgnoreCase( (msg = queue.take()))){System.out.println("Consumed item: " + msg);Thread.sleep(10L);}System.out.println("Got exit message, bye!");}catch(InterruptedException e) {e.printStackTrace();}}}
}
上面是一个典型的生产者 - 消费者样例,如果使用非 Blocking 的队列,那么我们就要自己去实现轮询、条件判断(如检查 poll 返回值是否 null)等逻辑,如果没有特别的场景要求,Blocking 实现起来代码更加简单、直观。
前面介绍了各种队列实现,在日常的应用开发中,如何进行选择呢?
以 LinkedBlockingQueue、ArrayBlockingQueue 和 SynchronousQueue 为例,我们一起来分析一下,根据需求可以从很多方面考量:
考虑应用场景中对队列边界的要求。ArrayBlockingQueue 是有明确的容量限制的,而 LinkedBlockingQueue 则取决于我们是否在创建时指定,SynchronousQueue 则干脆不能缓存任何元素。
从空间利用角度,数组结构的 ArrayBlockingQueue 要比 LinkedBlockingQueue 紧凑,因为其不需要创建所谓节点,但是其初始分配阶段就需要一段连续的空间,所以初始内存需求更大。
通用场景中,LinkedBlockingQueue 的吞吐量一般优于 ArrayBlockingQueue,因为它实现了更加细粒度的锁操作。
ArrayBlockingQueue 实现比较简单,性能更好预测,属于表现稳定的“选手”。
如果我们需要实现的是两个线程之间接力性(handoff)的场景,按照专栏上一讲的例子,你可能会选择 CountDownLatch,但是SynchronousQueue也是完美符合这种场景的,而且线程间协调和数据传输统一起来,代码更加规范。
可能令人意外的是,很多时候 SynchronousQueue 的性能表现,往往大大超过其他实现,尤其是在队列元素较小的场景。
今天我分析了 Java 中让人眼花缭乱的各种线程安全队列,试图从几个角度,让每个队列的特点更加明确,进而希望减少你在日常工作中使用时的困扰。
一课一练
关于今天我们讨论的题目你做到心中有数了吗? 今天的内容侧重于 Java 自身的角度,面试官也可能从算法的角度来考察,所以今天留给你的思考题是,指定某种结构,比如栈,用它实现一个 BlockingQueue,实现思路是怎样的呢?
请你在留言区写写你对这个问题的思考,我会选出经过认真思考的留言,送给你一份学习奖励礼券,欢迎你与我一起讨论。
你的朋友是不是也在准备面试呢?你可以“请朋友读”,把今天的题目分享给好友,或许你能帮到他。
角度,让每个队列的特点更加明确,进而希望减少你在日常工作中使用时的困扰。
一课一练
关于今天我们讨论的题目你做到心中有数了吗? 今天的内容侧重于 Java 自身的角度,面试官也可能从算法的角度来考察,所以今天留给你的思考题是,指定某种结构,比如栈,用它实现一个 BlockingQueue,实现思路是怎样的呢?
请你在留言区写写你对这个问题的思考,我会选出经过认真思考的留言,送给你一份学习奖励礼券,欢迎你与我一起讨论。
你的朋友是不是也在准备面试呢?你可以“请朋友读”,把今天的题目分享给好友,或许你能帮到他。
相关文章:
并发包中的ConcurrentLinkedQueue和LinkedBlockingQueue有什么区别?
第20讲 | 并发包中的ConcurrentLinkedQueue和LinkedBlockingQueue有什么区别? 在上一讲中,我分析了 Java 并发包中的部分内容,今天我来介绍一下线程安全队列。Java 标准库提供了非常多的线程安全队列,很容易混淆。 今天我要问你的…...
分享四个前端Web3D动画库在Threejs中使用的动画库以及优缺点附地址
Threejs中可以使用以下几种动画库:Tween.js:Tween.js是一个简单的缓动库,可以用于在three.js中创建简单的动画效果。它可以控制数值、颜色、矢量等数据类型,并提供了多种缓动函数,例如线性、弹簧、强化、缓冲等等。区别…...
谷歌浏览器和火狐浏览器永久禁用缓存【一劳永逸的解决方式】
目录 前言 谷歌浏览器 方式一 方式二 火狐浏览器 前言 缓存对于开发人员来说异常的痛苦,很多莫名其妙的bug就是由缓存导致的,但当我们在网上查找禁用缓存的方式时,找到的方式大多数都是在开发者工具的面板中勾选禁用缓存的选项,但这种方式有个弊端就是需要一直打开这个…...
kibana查看日志
一、背景 kibana收集日志功能很强大,之前只是简单的使用,此次系统学习了解并分享一波 二、kibana查看日志的基本使用 1.选择查询的服务和日志文件 注意:每个应用配置了开发与生产环境,需要找到指定的应用 1.1选择对应的应用 1.…...
JS 异步接口调用介绍
JS 异步接口调用介绍 Js 单线程模型 JavaScript 语言的一大特点就是单线程,也就是说,同一个时间只能做一件事。这样设计的方案主要源于其语言特性,因为 JavaScript 是浏览器脚本语言,它可以操纵 DOM ,可以渲染动画&a…...
5.深入理解HttpSecurity的设计
深入理解HttpSecurity的设计 一、HttpSecurity的应用 在前章节的介绍中我们讲解了基于配置文件的使用方式,也就是如下的使用。 也就是在配置文件中通过 security:http 等标签来定义了认证需要的相关信息,但是在SpringBoot项目中,我们慢慢脱离…...
opencv-python numpy常见的api接口汇总(持续更新)
前言 最近写代码总是提笔忘api,因为图像处理代码写的比较多,所以想着把一些常用的opencv的api,包括numpy的api做一个记录,后面再忘记的时候,就不用去google挨个搜索了,只需要在自己的博客中一查就全知道了…...
概率论小课堂:伯努利实验(正确理解随机性,理解现实概率和理想概率的偏差)
文章目录 引言I 伯努利试验1.1 伯努利分布(二项式分布)1.2 数学期望值(简称期望值)1.3 平方差(简称方差)1.4 标准差1.5 小结引言 假设买彩票中奖的概率是一百万分之一,如果要想确保成功一次,要买260万次彩票。你即使中一回大奖,花的钱要远比获得的多得多。 很多人喜…...
加密功能实现
文章目录1. 前言2. 密码加密1. 前言 本文 主要实现 对密码进行加密 ,因为 使用 md5 容易被穷举 (彩虹表) 而破解 ,使用 spring security 框架又太大了 (杀鸡用牛刀) 。 所以本文 就自己实现一个密码加密 . 2. 密码加密 这里我们通过 加盐是方式 来 对…...
大数据项目实战之数据仓库:用户行为采集平台——第1章 数据仓库概念
第1章 数据仓库概念 数据仓库(Data Warehouse),是为企业制定决策,提供数据支持的。可以帮助企业改进业务流程、提高产品质量等。 数据仓库的输入数据通常包括:业务数据、用户行为数据和爬虫数据等 业务数据…...
NTP对时服务器(NTP电子时钟)在生物制药业应用
NTP对时服务器(NTP电子时钟)在生物制药业应用 NTP对时服务器(NTP电子时钟)在生物制药业应用 8.1 系统概述 时钟系统为生物制药厂网络控制中心调度员、车场值班员及各部门工作人员提供统一的标准时间信息,也为本工程其它…...
JPA 之 QueryDSL-JPA 使用指南
Querydsl-JPA 框架(推荐) 官网:传送门 参考: JPA整合Querydsl入门篇SpringBoot环境下QueryDSL-JPA的入门及进阶 概述及依赖、插件、生成查询实体 1.Querydsl支持代码自动完成,因为是纯Java API编写查询࿰…...
如何找回回收站删除的视频?这三种方法可以试试
在使用电脑过程中,我们可能会误删重要的文件,特别是影音文件。在这样的情况下,我们可以从计算机的回收站中找回已经被删除的视频。但是有时候,我们可能会不小心清空回收站,这时候就需要一些技巧来恢复回收站删除的视频…...
FPGA_边沿监测理解
一、简易频率计设计中为什么一定要获取下降沿?gate_a:实际闸门信号gate_a_stand:将实际闸门信号打一拍之后的信号gate_a_fall_s:下降沿标志信号cnt_clk_stand: Y值,即在实际闸门信号下,标准时钟信号的周期个数cnt_clk_stand_reg:保存Y值的寄存器核心问题…...
41 42Ping-Pong操作
提高电路吞吐率的结构——Ping-Pong操作 1.Ping-Pong操作原理 作用:为了让两个不匹配的模块进行对接,并且在对接的过程中让这两个模块能够同时工作,提高数据处理的吞吐率(也称throughput效能) 常见的不匹配࿱…...
保护你的数据安全,了解网络安全法!
网络安全法是中国自2017年6月1日起实施的一项法律,旨在保障网络安全和信息安全,维护国家安全和社会稳定。网络安全法覆盖了众多方面,包括网络基础设施安全、网络运营安全、个人信息保护、网络安全监管等,具有重要的法律意义和社会…...
什么是CatGPT-使用效果如何-
个人使用效果,评分优,足以满足教学和填表。程序媛借助CatGPT(ChatGPT更佳),基本上可以秒杀不用此类工具的程序猿(男)!!!问:为什么使用AIGC能大幅度…...
【MySQL】第17章_触发器
第17章_触发器 在实际开发中,我们经常会遇到这样的情况:有 2 个或者多个相互关联的表,如商品信息和库存信息分别存放在 2 个不同的数据表中,我们在添加一条新商品记录的时候,为了保证数据的完整性,必须同时…...
【前端】一个更底层库-React基础知识点第2篇
目录属性状态PROPSPROP VALIDATIONSTATEFORMCONTROLLED COMPONENTSMIXINCOMPONENT APICOMPONENT LIFECYCLETOP API上一篇文章也是React基础知识点,了解到了React是什么?为什么要使用React?还知道了JSX概述,JSX嵌入变量,…...
GIT基础常用命令-1
git基础常用命令-11.git简介及配置1.1 git简介1.2 git配置config1.2.1 查看配置git config1.2.2 配置设置1.2.3 获取帮助git help2 GIT基础常用命令2.1 获取镜像仓库2.1.1 git init2.1.2 git clone2.2 本地仓库常用命令2.2.1 git status2.2.2 git add2.2.3 git diff2.2.4 git c…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
