当前位置: 首页 > news >正文

R语言基础的代码语法解译笔记

1、双冒号,即:“::”

要使用某个包里的函数,通常做法是先加载(library)包,再调用函数。最新加载的包的namespace会成为最新的enviroment,某些情况下可能影响函数的结果。而package name::functionname的用法,一是可以在需要用某个函数时临时直接加载包,不用事先library。另一点更重要的是尽可能减少library带来的附带作用,这一点在开发R包时影响较大。而这种写法的副作用,是会稍微慢上那么几毫秒,在需要反复循环使用一个函数时对效率有影响,其他时候除了写起来麻烦一点,基本没有显见的副作用。

2、%>% (向右操作符,forward-pipe operator)

把左侧的数据或表达式,传递给右侧的函数调用或表达式进行运行,可以连续操作。相当于将左边的作为右边函数的第一个参数。

现实原理如下图所示,使用%>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集再向右侧传递给C函数,最后完成数据计算。

例如:

  • f(x,y)等价于x %>% f(y)
  • g(f(x,y),z)等价于x %>% f(y) %>% g()
library(ggplot2)
library(dplyr)cut_depth <- group_by(diamonds,cut,depth)
cut_depth <- summarise(cut_depth,n=n())
cut_depth <- filter(cut_depth,depth>55,depth<70)
cut_depth <- mutate(cut_depth,prop=n/sum(n))
cut_depth# 使用%>%
cut_depth1 <- diamonds%>%group_by(cut,depth)%>%summarise(n=n())%>%filter(depth>55,depth<70)%>%mutate(prop=n/sum(n))
cut_depth1# 另外一个例子
library(magrittr)set.seed(123) #设置种子序列,保证结果可重复
n1<-rnorm(10000)        
n2<-abs(n1)*50        
n3<-matrix(n2,ncol = 100) 
n4<-round(rowMeans(n3))
hist(n4%%7)# 使用 %>%
set.seed(123)
rnorm(10000) %>%abs %>% `*` (50)  %>%matrix(ncol=100)  %>%rowMeans %>% round %>% `%%`(7) %>% hist

3、%T>%(向左操作符,tee operator)

功能和 %>% 基本是一样的,只不过它是把左边的值做为传递的值,而不是当前步计算得到的值。

现实原理如下图所示,使用%T>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集不再向右侧传递,而是把B左侧的A数据集再次向右传递给C函数,最后完成数据计算。

例子:

假设我们计算如下:

library(magrittr)set.seed(123)
rnorm(10000) %>%abs %>% `*` (50)  %>%matrix(ncol=100)  %>%rowMeans %>% round %>% `%%`(7) %>% hist %>% sum

提示报错。这是由于输出直方图后,返回值为空,那么再继续使用管道,就会把空值向右进行传递,这样计算最后一步时就会出错。这时我们需求的是,把除以7的余数向右传递给最后一步求和。

使用%T>%改成如下:

library(magrittr)set.seed(123)
rnorm(10000) %>%abs %>% `*` (50)  %>%matrix(ncol=100)  %>%rowMeans %>% round %>% `%%`(7) %T>% hist %>% sum

计算出结果。

4、 %$% (解释操作符,exposition pipe-operator)

%$%的作用是把左侧数据的属性名传给右侧,让右侧的调用函数直接通过名字,就可以获取左侧的数据。比如,我们获得一个data.frame类型的数据集,通过使用 ,在右侧的函数中可以直接使用列名操作数据。

现实原理如下图所示,使用%$%把左侧的程序的数据集A传递右侧程序的B函数,同时传递数据集A的属性名,作为B函数的内部变量方便对A数据集进行处理,最后完成数据计算。

例子:

下面定义一个10行3列的data.frame,列名分别为x,y,z,获取x列大于5的数据集。使用 %$% 把列名x直接传到右侧进行判断。这里.代表左侧的完整数据对象。一行代码就实现了需求,而且这里不需要显示的定义中间变量。

library(magrittr)set.seed(123)
df<-data.frame(x=1:10,y=rnorm(10),z=letters[1:10])
df[df$x>5,]# 使用%$%后
set.seed(123)
data.frame(x=1:10,y=rnorm(10),z=letters[1:10]) %$% .[x>5,]

5、%<>% (复合赋值操作符,compound assignment pipe-operator)

%<>%复合赋值操作符, 功能与 %>% 基本是一样的,多了一项额外的操作,就是把结果写回到最左侧的对象(覆盖原来的值)。比如,我们需要对一个数据集进行排序,那么需要获得排序的结果,用%<>%就是非常方便的。

现实原理如下图所示,使用%<>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集再向右侧传递给C函数,C函数结果的数据集再重新赋值给A,完成整个过程。

例子:

library(magrittr)set.seed(123)
x<-rnorm(10)
x %>% abs %>% sort
x # 取完绝对值,排完序之后的结果并没有直接写到x里面去# 使用%<>%
set.seed(123)
x<-rnorm(10)
x %<>% abs %>% sort
x # 但是如果使用%<>%操作符,你会发现取完绝对值,排完序之后的结果直接覆盖掉了原来的x。

6、符号:$

$符号用于提取数据框(data frame)或列表(list)中的成员。它允许访问数据框或列表中的某个列(成员),并返回该列的值。

例子:

df <- data.frame(name = c("Alice", "Bob", "Charlie"),age = c(25, 30, 35))df$name
df$age

注意:$符号只能用于数据框和列表类型的对象,不能用于向量和其他对象。

7、as.factor 或 factor函数作用

as.factor函数用于将一个变量转换为因子(factor)类型(强制转换),分组时用的较多。因子是R语言中用于表示分类变量的数据类型。当将一个变量转换为因子时,R会自动将变量的不同取值作为因子的水平(level),并将原始变量的值替换为对应水平的编码。可以使用as.factor()函数取代factor()函数。

例子:

gender <- c("男", "女", "男", "男", "女")gender_factor <- as.factor(gender)
gender_factor

这里返回结果包括以下两个。

  • x向量,这是将转换为因子的向量。
  • levels:原x向量内元素的可能值。

可以使用参数levels强制设定分类数据的顺序:

gender <- c("男", "女", "男", "男", "女")gender_factor <- factor(gender, levels=c("女", "男"))
gender_factor

如果有缺失的Levels值,也可以使用levels参数设置完整的Levels数据:

gender <- c("男", "女", "男", "男", "女")gender_factor <- factor(gender, levels=c("女", "男", "中"))
gender_factor

将因子水平进行修改:

gender <- c("男", "女", "男", "男", "女")gender_factor <- factor(gender, levels=c("女", "男", "中"), labels = c("1","2","3"))
gender_factor

注意:指定levels时,使用as.factor会报错。

8、aes 函数作用

aes函数是ggplot2包中的一个重要函数,用于创建美学映射(Aesthetic Mapping),即将数据的变量映射到图形的美学属性上。

aes函数的使用通常发生在ggplot()函数中的mapping参数中。它允许将数据的变量映射到图形的不同属性,如颜色、形状、大小、位置等。通过将美学属性与具体的数据列关联,可以创建丰富多样的图形效果,并在不同的图层中进行数据可视化。

# 映射函数,函数的最常见参数有两个
# x:x向量,将数据映射到本图层的x轴
# y:y向量,将数据映射到本图层的y轴
# …:其他向量,将数据映射到本图层的其他几何要素上library(ggplot2)
aes(x, y, ...)

9、scale_colour_manual 函数作用

scale_colour_manual是ggplot2包中的一个函数,用于手动自定义颜色映射。它允许用户指定不同数据值对应的颜色,以及设置相应的标签和图例。

scale_colour_manual函数通常与ggplot函数中的aes函数和相关的图层函数(如geom_point、geom_line等)一起使用,用于自定义颜色映射。例如,使用以下代码可以创建一个散点图,并手动指定数据值1对应的颜色为红色,数据值2对应的颜色为蓝色。

library(ggplot2)# 创建数据框
df <- data.frame(x = c(1, 2, 1, 2), y = c(1, 2, 2, 1), group = c(1, 1, 2, 2))# 绘制散点图,并手动指定颜色映射
ggplot(data = df, mapping = aes(x = x, y = y, color = factor(group))) +geom_point() + # 绘制散点图scale_color_manual(values = c("red", "blue"))

上述代码首先创建了一个数据框df,其中包含了三个变量x、y和group。然后使用ggplot函数创建一个散点图,并使用aes函数将x映射到x轴,y映射到y轴,group映射到颜色属性。最后,使用geom_point函数绘制散点图,并使用scale_color_manual函数手动指定颜色映射,将group为1的数据值映射为红色,group为2的数据值映射为蓝色。

通过调整scale_color_manual函数中的values参数,可以指定更多数据值对应的颜色。

10、scale_fill_manual 函数作用

scale_fill_manual是ggplot2包中的一个函数,用于手动自定义填充颜色的映射。它允许用户指定不同数据值对应的填充颜色,以及设置相应的标签和图例。

scale_fill_manual函数通常与ggplot函数中的aes函数和相关的图层函数(如geom_bar、geom_area等)一起使用,用于自定义填充颜色映射。例如,使用以下代码可以创建一个柱状图,并手动指定不同类别的填充颜色。

library(ggplot2)# 创建数据框
df <- data.frame(category = c("A", "B", "C", "D"),value = c(10, 15, 20, 25))# 创建柱状图,并手动指定填充颜色映射
ggplot(data = df, mapping = aes(x = category, y = value, fill = category)) +geom_col() +scale_fill_manual(values = c("red", "blue", "green", "yellow"))

上述代码首先创建了一个数据框df,其中包含了两个变量category和value。然后使用ggplot函数创建一个柱状图,并使用aes函数将category映射到x轴,value映射到y轴,以及作为柱子的填充颜色。最后,使用geom_col函数绘制柱状图,并使用scale_fill_manual函数手动指定填充颜色映射,将不同的category类别映射为不同的颜色。

通过调整scale_fill_manual函数中的values参数,可以指定更多数据值对应的填充颜色。

11、stat_ellipse 函数作用

stat_ellipse是ggplot2包中的一个统计变换函数,用于在散点图上添加椭圆。它可以根据给定的数据点的均值和协方差矩阵,绘制出椭圆来表示数据的分布情况,提供了对数据集的可视化描述。

stat_ellipse函数通常与geom_point函数一起使用,用于在散点图上显示椭圆。例如,使用以下代码可以创建一个带有椭圆的散点图。

library(ggplot2)# 创建数据框
df <- data.frame(x = rnorm(100), y = rnorm(100))# 绘制散点图,并添加椭圆
ggplot(data = df, mapping = aes(x = x, y = y)) +geom_point() +stat_ellipse()

上述代码首先创建了一个数据框df,其中包含了两个随机生成的变量x和y。然后使用ggplot函数创建一个散点图,并使用aes函数将x映射到x轴,y映射到y轴。最后,使用geom_point函数绘制散点图,并使用stat_ellipse函数添加椭圆。

stat_ellipse函数默认使用95%的置信区间绘制椭圆,即表示数据的大致范围。还可以通过调整参数来定制椭圆的样式,例如设置椭圆的颜色、填充、线条类型等。

完整例子:

## 设置种子
set.seed(20240208)## R包加载
library(ggplot2)## 数据构建(无意义)
data1<-data.frame(x=rnorm(500,mean = 15,sd=10),y=rnorm(500,mean = 10,sd=10))
data2<-data.frame(x=rnorm(500,mean = 20,sd=10),y=rnorm(500,mean = 15,sd=10))
data<-rbind(data1,data2)## kmeans聚类
kmeans<-kmeans(data,2,nstart = 1000)
data$cluster<-as.factor(kmeans$cluster)## 绘图
ggplot(data = data,aes(x=x,y=y,color=cluster))+geom_point(alpha=0.3)+stat_ellipse(aes(x=x,y=y,fill=cluster),geom = "polygon",level = 0.95,alpha=0.2)+scale_colour_manual(values = c("#00AFBB","#FC4E07"))+scale_fill_manual(values = c("#00AFBB","#FC4E07"))+theme_bw()->p1
print(p1)

相关文章:

R语言基础的代码语法解译笔记

1、双冒号&#xff0c;即&#xff1a;“::” 要使用某个包里的函数&#xff0c;通常做法是先加载&#xff08;library&#xff09;包&#xff0c;再调用函数。最新加载的包的namespace会成为最新的enviroment&#xff0c;某些情况下可能影响函数的结果。而package name::funct…...

【蓝桥杯】蓝桥杯算法复习(一)

&#x1f600;大家好&#xff0c;我是白晨&#xff0c;一个不是很能熬夜&#x1f62b;&#xff0c;但是也想日更的人✈。如果喜欢这篇文章&#xff0c;点个赞&#x1f44d;&#xff0c;关注一下&#x1f440;白晨吧&#xff01;你的支持就是我最大的动力&#xff01;&#x1f4…...

移动端精准测试简介

在测试领域每隔一段时间&#xff0c;就会有一些主流的测试技术&#xff0c;比如说&#xff1a;接口自动化&#xff0c;WebUI, AppUI自动化&#xff0c;然后就是测试平台的开发&#xff0c;各类专项测试&#xff08;性能&#xff0c;安全&#xff09;,再到前几年的手机集群云测平…...

CCProxy代理服务器地址的设置步骤

目录 前言 一、下载和安装CCProxy 二、启动CCProxy并设置代理服务器地址 三、验证代理服务器设置是否生效 四、使用CCProxy进行代理设置的代码示例 总结 前言 CCProxy是一款常用的代理服务器软件&#xff0c;可以帮助用户实现网络共享和上网代理。本文将详细介绍CCProxy…...

探秘分布式神器RMI:原理、应用与前景分析(二)

本系列文章简介&#xff1a; 本系列文章将深入探究RMI远程调用的原理、应用及未来的发展趋势。首先&#xff0c;我们会详细介绍RMI的工作原理和基本流程&#xff0c;解析其在分布式系统中的核心技术。随后&#xff0c;我们将探讨RMI在各个领域的应用&#xff0c;包括分布式计算…...

[项目设计] 从零实现的高并发内存池(三)

&#x1f308; 博客个人主页&#xff1a;Chris在Coding &#x1f3a5; 本文所属专栏&#xff1a;[高并发内存池] ❤️ 前置学习专栏&#xff1a;[Linux学习] ⏰ 我们仍在旅途 ​ 目录 4.CentralCache实现 4.1 CentralCache整体架构 4.2 围绕Span的相关设计…...

将Q算法和D算法结合应用到llm解码上之人在回路

将Q算法和D算法结合应用到llm解码上之人在回路 参考地址代码解释 参考地址 https://dongfangyou.blog.csdn.net/article/details/136466609 代码 import numpy as np from tqdm import tqdmfrom sample import net, char2id_dict, get_real_p# 假设的词汇表 VOCABULARY lis…...

el-table-column嵌套el-form-item不能进行校验问题解决

项目为vue3elementPlus开发的项目 业务要求&#xff1a;table表格展示数据&#xff0c;其中有一行是ip地址可展示可修改&#xff0c;此处要求增加自定义校验规则 先看一下效果&#xff1a; 此处先描述一下&#xff0c;问题出在了哪里&#xff0c;我将el-table的data,使用一个…...

leetcode200. 岛屿数量

leetcode200. 岛屿数量 题目 思路 遍历每一个网格&#xff0c;若网格为1&#xff0c;岛屿数量1&#xff0c;利用一个深度优先搜索函数将岛屿置零&#xff0c;注意判断数组边界 代码 class Solution:def numIslands(self, grid: List[List[str]]) -> int:self.grid grid…...

MySQL--索引类型详解

索引的类型 主键索引&#xff1a; PRIMARY KEY&#xff0c;当一张表的某个列是主键的时候&#xff0c;该列就是主键索引&#xff0c;一张表只允许有一个主键索引&#xff0c;主键所在的列不能为空。 创建主键索引的SQL语法&#xff1a; # 给user表中的id字段创建名为id_ind…...

R语言中ggplot2图例位置、颜色、背景、标题

目录 1、不显示图例 2、自定义图例位置 3、修改图例背景颜色、外框颜色、大小 4、修改图例大小 5、图例设置背景、线框为空 6、自定义设置多个图例的标题 7、设置多个图例的之间的间隔 8、取消不需要的图例显示 1、不显示图例 theme(legend.position "none"…...

波卡 Alpha 计划启动,呼唤先锋创新者重新定义 Web3 开发

原文&#xff1a;https://polkadot.network/blog/the-polkadot-alpha-program-a-new-era-for-decentralized-building-collaboration/ 编译&#xff1a;OneBlock 区块链领域不断发展&#xff0c;随之而来的是发展和创新机会的增加。而最新里程碑是令人振奋的 Polkadot Alpha …...

公网IP与私有IP及远程互联

1.公网有私有IP及NAT 公网IP是全球唯一的IP&#xff0c;通过公网IP&#xff0c;接入互联网的设备是可以访问你的设备。但是IPV4资源有限&#xff0c;一般ISP(Internet Service Provider)并不会为用户提供公网IP。所以家里的计算机在公司是没法直接使用windows远程桌面直接访问…...

openCV xmake debug失效 release可以使用

在使用xmake构建一个项目时&#xff0c;添加openCV库&#xff0c;调用 imread函数时&#xff0c;debug函数失效&#xff0c; release可以使用&#xff0c;最后发现是xmake.lua写的有问题 option("OpenCV4.6.0")set_showmenu(true) set_default(true) set_category(&…...

ES分布式搜索-IK分词器

ES分词器-IK 1、为什么使用分词器&#xff1f; es在创建倒排索引时需要对文档分词&#xff1b;在搜索时&#xff0c;需要对用户输入内容分词。但默认的分词规则对中文处理并不友好。 我们在kibana的DevTools中测试&#xff1a; GET /_analyze {"analyzer": "…...

基于卷积神经网络的野外可食用植物分类系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 本文详细探讨了一基于深度学习的可食用植物图像识别系统。采用TensorFlow和Keras框架&#xff0c;利用卷积神经网络&#xff08;CNN&#xff09;进行模型训练和预测&#xff0c;并引入迁移学习模型…...

Raingad IM即时聊天/即时通讯网站源码,附带系统搭建教程

支持功能 支持单聊和群聊&#xff0c;支持发送表情、图片、语音、视频和文件消息单聊支持消息已读未读的状态显示&#xff0c;在线状态显示群聊创建、删除和群成员管理、群公告、群禁言等支持置顶联系人&#xff0c;消息免打扰&#xff1b;支持设置新消息声音提醒&#xff0c;…...

for语句的实际应用(3)

3145&#xff1a;【例24.3】 奇数求和 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 9847 通过数: 5442 【题目描述】 计算非负整数 m 到 n&#xff08;包括 m 和 n&#xff09;之间的所有奇数的和&#xff0c;其中&#xff0c;m 不大于 n&#xff0c;且 n 不大…...

c++ Windows获取软件安装列表信息

链接 #include <windows.h> #include <stdio.h> #include <iostream> #include <vector>using namespace std;#ifndef MSVCR #define _T #define _tcscpy strcpy #define _stprintf sprintf #define _tcscmp strcmp #endifclass SetupSoftInfo { publ…...

音视频学习笔记——c++多线程(一)

✊✊✊&#x1f308;大家好&#xff01;本篇文章主要整理了部分多线程相关的内容重点&#x1f607;。首先讲解了多进程和多线程并发的区别以及各自优缺点&#xff0c;之后讲解了Thead线程库的基本使用。 本专栏知识点是通过<零声教育>的音视频流媒体高级开发课程进行系统…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...